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Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in the seminal paper [FZ02a].
A cluster algebra is a commutative ring equipped with a combinatorial structure called a
cluster pattern. A cluster pattern is a graph whose vertices are clusters, which are tuples
of cluster variables, and edges are exchange relations. Such combinatorial structures have
been found in many areas of mathematics, and thus the theory of cluster algebra has
many applications.

One of the main applications of the theory of cluster algebras is the study of discrete dy-
namical systems. In their fourth paper on cluster algebras [FZ07], Fomin and Zelevinsky
introduced bipartite belts, which are discrete dynamical systems associated with bipartite
symmetrizable generalized Cartan matrices. They proved that the bipartite belt associ-
ated with a generalized Cartan matrix A is periodic if and only if A is of finite type, that
is, there exists a vector v > 0 such that Av > 0. Thus, periodic bipartite belts are classi-
fied by the Cartan-Killing classification. This result generalizes and refines the periodicity
of Zamolodchikov’s Y-systems, which was conjectured by Zamolodchikov [Zam91] in the
study of thermodynamic Bethe ansatz, and proved by Fomin and Zelevinsky in [FZ03]
prior to their fourth paper [FZ07]. They also proved that there is a bijection between
the set of terms appear in a bipartite belt associated with a finite type Cartan matrix
A and the set of almost positive roots in the root system associated with A. A key fact
in the proof of these results is that terms in a bipartite belt are realized as cluster vari-
ables in some cluster algebra, and recurrence relations of this bipartite belt are realized
as exchange relations in the same cluster algebra.

Bipartite belts are very special cases of discrete dynamical systems called Y-systems and
T-systems in cluster algebras, in the sense of Nakanishi’s paper [Nak11b]. These discrete
dynamical systems have nice properties inherited from general properties of cluster alge-
bras such as the Laurent phenomenon [FZ02a], the Laurent positivity [LS15, GHKK18],
the synchronicity phenomenon [Nak19], and the quantization [BZ05, FG09]. It has been
discovered that many interesting discrete dynamical systems can be realized as Y-systems
or T-systems in cluster algebras, for example:

• periodic discrete dynamical systems that are generalization of Zamolodchikov’s Y-
systems [FZ07, GP19a, IIK+13a, IIK+13b, Kel13, NS16],

• non-periodic but integrable discrete dynamical systems such as Q-systems [DFK09,
DFK10, Ked08], pentagram maps [GSTV16, Gli11], the q-Painlevé equa-
tions [BGM18, HI14, Oku15], and discrete dynamical systems associated
with mutation-periodic quivers [FH14, FM11] and bipartite recurrent quiv-
ers [GP19b, GP20].

Because of these nice properties and interesting examples, it is natural to ask what discrete



Introduction 4

dynamical systems arise from cluster algebras in general. In this paper, we give an answer
to this question.

■Main result Let r be a positive integer, and we denote by [1, r] the set {1, . . . , r}.
Given a triple of matrices (N0, N+, N−) in Matr×r(Z[z]) whose entries are written as

Nε =

( ∑
p∈Z≥0

nεab;pz
p

)
a,b∈[1,r]

,

we consider the following relation for each (a, u) ∈ [1, r] × Z among indeterminates in
{Ta(u) | (a, u) ∈ [1, r]× Z} :

r∏
b=1

∏
p≥0

Tb(u+ p)n
0
ba;p =

r∏
b=1

∏
p≥0

Tb(u+ p)n
+
ba;p +

r∏
b=1

∏
p≥0

Tb(u+ p)n
−
ba;p . (0.0.1)

We impose the following conditions on (N0, N+, N−):

(N1) n0ab;p = δabδp0 + δaσ(b)δppa
for some σ ∈ Sr and pa ∈ Z>0,

(N2) n+ab;p ≥ 0 and n−ab;p ≥ 0 for any a, b, p,

(N3) n+ab;p = 0 and n−ab;p = 0 unless 0 < p < pa,

(N4) n+ab;pn
−
ab;p = 0 for any a, b, p,

where Sr is the symmetric group on [1, r] and δ is the Kronecker delta. The condition
(N1) says that the left-hand side in (0.0.1) is equal to Ta(u)Tσ(a)(u+pσ(a)). The condition
(N2) says that the right-hand side in (0.0.1) is a sum of two monomials. The condition
(N3) together with (N1) implies that any Ta(u) can be written as a rational function in
the initial variables (Ta(p))(a,p)∈Rin

, where

Rin = {(a, p) ∈ [1, r]× Z | 0 ≤ p < pa}.

The condition (N4) says that the two monomials in the right-hand side in (0.0.1) do not
have common divisors.

Definition 0.0.1. We say that a triple of matrices α = (A+, A−, D) is a T-datum of
size r if A± can be written as A± = N0 − N± by a triple of matrices (N0, N+, N−) in
Matr×r(Z[z]) satisfying (N1)–(N4), and D is a positive integer diagonal matrix satisfying
the following conditions:

• N0D = DN0,
• D−1N±D ∈ Matr×r(Z[z]),
• A+DA

†
− = A−DA

†
+,

where A†
± := (A±|z=z−1)T.

Definition 0.0.2. Let α be a T-datum. Let T(α) be the commutative ring gener-
ated by the indeterminates (Ta(u)

±1)(a,u)∈[1,r]×Z subject to the relations (0.0.1) and

Ta(u)Ta(u)
−1 = 1 for any (a, u) ∈ [1, r] × Z. We define T◦(α) to be the subring of

T(α) generated by (Ta(u))(a,u)∈[1,r]×Z. We say that T◦(α) is the T-algebra associated
with α. We also say that the family of relations (0.0.1) is the T-system associated with
α.
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Let I be a finite index set. For a pair (B, x) of an I × I skew-symmetrizable integer
matrix B and an I-tuple x = (xi)i∈I of algebraically independent commuting variables,
the cluster algebra associated with the initial seed (B, x) is defined [FZ02a, FZ07], which
is denoted by A(B, x). In Section 2.2.4, we prove the following:

Theorem 0.0.3. Let α be a T-datum of size r. Let x = (xa,p)(a,p)∈Rin
be an Rin-tuple

of algebraically independent commuting variables. Then there exists a unique Rin × Rin

skew-symmetrizable integer matrix B such that

(1) there exists a unique injective ring homomorphism ι : T◦(α) ↪→ A(B, x) such that
ι(Ta(p)) = xa,p for any (a, p) ∈ Rin,

(2) ι(Ta(u)) is a cluster variable in A(B, x) for any (a, u) ∈ [1, r]× Z,
(3) the image of the relation (0.0.1) by ι is an exchange relation in A(B, x) for any

(a, u) ∈ [1, r]× Z.

Conversely, we also prove that T-systems in cluster algebras (in the sense in [Nak11b])
yield T-data (Section 2.1 and 2.2.2). Therefore, our definition of T-data completely char-
acterize when a system of difference equations of the form (0.0.1) is realized as a family of
exchange relations in a cluster algebra. In the following, we give remarks and applications
of Theorem 0.0.3.

■Sequences of mutations that preserve exchange matrices The matrix B in Theorem
0.0.3 is called the initial exchange matrix in the cluster algebra A(B, x). In the proof of
Theorem 0.0.3, we give the explicit formula (2.2.9) expressing B using a matrix coeffi-
cients in a T-datum. We also construct a sequence of mutations, which are fundamental
operations in the theory of cluster algebras, that preserves the exchange matrix B up to
relabeling of indices. Such a sequence of mutations is called a mutation loop.

Mutation loops themselves are of interest from a geometric viewpoint: they are rep-
resentatives of elements in cluster modular groups [FG09], which are cluster algebraic
counterparts of mapping class groups of surfaces. We show that essentially all mutation
loops are obtained by the formula (2.2.9) (Theorem 2.2.18). The formula (2.2.9) gives a
effective way to find mutation loops since finding T-data is usually easier than finding mu-
tation loops. We give many examples of T-data in Section 2.3, which recover or generalize
mutation loops in the literature. In Section 2.3.1, we classify T-data of size 1 (Theo-
rem 2.3.1), which turns out to recover the classification of period 1 quivers by Fordy and
Marsh [FM11]. In Section 2.3.2, we define T-data associated with pairs of commuting Car-
tan matrices. They are generalization of bipartite belts by Fomin and Zelevinsky [FZ07].
In particular, our definition also works for non-bipartite cases such as the “tadpole type”.
In Section 2.3.3, we define T-data associated with level restricted T-systems for quantum
affinizations [KNS09]. These T-systems are restricted version of T-systems for quantum
affinizations discovered by Hernandez [Her07], where “T-systems for quantum affiniza-
tions” mean algebraic relations among q-characters of Kirillov-Reshetikhin modules over
quantum affinizations. Although mutation loops corresponding to these T-data are al-
ready constructed in [IIK+13a, IIK+13b, KNS09, Nak11c], our method gives a simple
systematic way to produce these mutation loops.

■T-systems with coefficients and Y-systems Theorem 0.0.3 can be extended to T-
systems with coefficients. In fact, we show Theorem 0.0.3 in this generality (Theorem
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2.2.19). Coefficients of T-systems are governed by Y-systems, which are generalization
of Zamolodchikov’s Y-systems [Zam91]. In terms of T-data, the coefficients of the T-
system associated with a T-datum α is described by the Langlands dual T-datum α∨ =
(A∨

+, A
∨
−, D

∨). If we write the entries of the matrices in α∨ as

N∨
ε =

( ∑
p∈Z≥0

ňεab;pz
p

)
a,b∈[1,r]

,

the coefficients of the T-system associated with α is governed by the following system of
relations:

r∏
b=1

∏
p≥0

Yb(u− p)ň
0
ab;p =

∏r
b=1

∏
p≥0

(
1⊕ Yb(u− p)

)ň−
ab;p∏r

b=1

∏
p≥0

(
1⊕ Yb(u− p)−1

)ň+
ab;p

,

where ⊕ is the “auxiliary addition” in the underlying semifield to which the coefficients
belong. We call this family of relations the Y-system associated with α.

■Periodic T-systems and Y-systems We say that a T-datum is of finite type if the
set {Ta(u) ∈ T◦(α) | (a, u) ∈ [1, r] × Z} is a finite set. This is equivalent to saying that
the T-system associated with α is periodic. By the synchronicity phenomenon of cluster
algebras [Nak19], this is also equivalent to the periodicity of the Y-system associated with
α in universal semifields.

Many examples of finite type T-data have been found in the literature, which are
associated with the following data:

• finite type Cartan matrices [Zam91, FZ03, FZ07],
• tensor products of pairs of finite type Cartan matrices [RVT93, Kel13],
• untwisted quantum affine algebras [KN92, IIK+13a, IIK+13b],
• the sine-Gordon Y-systems and the reduced sine-Gordon Y-systems [Tat95, NS16],
which are associated with continued fractions,

• admissible ADE bigraphs [GP19a].

In many cases in this list, the periodicities of Y-systems in universal semifields were
conjectured in the 1990s in physics [Zam91, RVT93, KN92, Tat95], and proved in the 21st
century by using the theory of cluster algebras [FZ03, FZ07, Kel13, IIK+13a, IIK+13b,
NS16, GP19a].

Since there are many interesting examples of finite type T-data as in this list, the
classification of finite type T-data is a interesting problem. Except for special cases [FZ07,
GP19a], however, the classification of finite type T-data is still not well understood. In
this paper, we prove that any finite type T-datum satisfies the following simultaneous
positivity:

Theorem 0.0.4 (Theorem 3.1.5). Let α = (A+, A−, D) be a T-datum. If α is of finite

type, then there exists a vector v > 0 such that ÅT
+v > 0 and ÅT

−v > 0, where Å± =
A±|z=1.

Theorem 0.0.4 gives a effective method to determine that a given T-datum is not of
finite type (see Example 3.1.6). This theorem is also used in the next topic: relationship
between cluster algebras and Nahm’s conjecture.
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■Nahm’s conjecture In [Nah07], Nahm gave a connection between rational conformal
field theories and torsion elements in Bloch groups. In particular, Nahm’s conjecture states
that the modularity of certain hypergeometric q-series is related to torsion elements in
Bloch groups (see [Zag07, Chapter II, Section 3]). We give a version of Nahm’s conjecture
from a viewpoint of cluster algebras.

Let α = (A+, A−, D) be a Cartan-like T-datum (see Definition 3.2.1) of finite type. By
Theorem 0.0.4, we can show that the system of equations

fa =
r∏

b=1

(1− fb)
κ̌ab (a ∈ [1, r]) (0.0.2)

has a unique real solution such that 0 < fa < 1 for any a ∈ [1, r], where we define

K∨ = (κ̌ab) ∈ Matr×r(Q) by K∨ = (Å∨
+)

−1Å∨
−. For this solution, the value

cα :=
6

π2

r∑
a=1

daL(fa) (0.0.3)

turns out to be a rational number, where L(x) is the Rogers dilogarithm function. This
fact follows from dilogarithm identities in cluster algebras that are proved by Nakan-
ishi [Nak11b]. Moreover, for any solution (f1, . . . , fr) ∈ Qr

of (0.0.2), we can define
a torsion element in the Bloch group B(F ), where F is a number field containing the
solution.

Motivated by Nahm’s conjecture, we introduce a family of hypergeometric q-series
(Zα,σ(q))σ∈Sα for any Cartan-like T-datum α of finite type, where Sα is a finite abelian
group associated with α. We call these q-series the partition q-series of α. In fact,
these are generalization of partition q-series of mutation loops introduced by Kato and
Terashima [KT15]. We conjecture that partition q-series are modular functions:

Conjecture 0.0.5 (Conjecture 3.3.3). Let α be a Cartan-like T-datum of finite type.
Then q−cα/24Zα,σ(q) is a modular function for any σ ∈ Sα, where cα is the rational
number defined by (0.0.3).

We prove this conjecture for r = 1 using Rogers-Ramanujan type identities (Theo-
rem 3.3.5). We also give the following examples (Example 3.3.6-3.3.9) supporting the
conjecture for r ≥ 2: Zagier’s lists of 2× 2 and 3× 3 matrices concerning the Nahm’s con-
jecture [Zag07], a q-series in the Andrew-Gordon identity [And74], fermionic formulas for
quantum affine algebras [HKO+02], and q-series appear in the theory of nilpotent double
affine Hecke algebras [CF13].
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Chapter 1

Cluster algebras

We review cluster algebras following [FZ07].

1.1 Matrix mutations and quiver mutations
Let I be a finite index set. An I × I integer matrix B = (Bij)i,j∈I is called skew-
symmetrizable if there exist a tuple of positive integers d = (di)i∈I such that Bijdj =
−Bjidi. Such a tuple is called a (right) symmetrizer of B. For any I × I matrix B =
(Bij)i,j∈I and bijection ν : I → I ′ between finite index sets, we define an I ′ × I ′ matrix
ν(B) = (B′

i′j′)i′,j′∈I′ by B′
ν(i)ν(j) = Bij .

Definition 1.1.1. Let B = (Bij)i,j∈I be a skew-symmetrizable integer matrix, and let
k ∈ I. The matrix mutation µk : B 7→ B′ is a transformation that transforms B into a
new skew-symmetrizable integer matrix B′ = (B′

ij)i,j∈I defined as follows:

B′
ij =

{
−Bij if i = k or j = k,

Bij + [Bik]+[Bkj ]+ − [−Bik]+[−Bkj ]+ otherwise,
(1.1.1)

where [x]+ := max(0, x).

If d is a symmetrizer of B, then it is also a symmetrizer of µk(B). In particular, if B is
a skew-symmetric integer matrix, then µk(B) is also a skew-symmetric integer matrix. In
this case, it is convenient to describe matrix mutations in terms of quivers. A quiver is a
finite oriented graph without loops and 2-cycles. For any skew-symmetric integer matrix
B, we define a quiver Q(B) as follows: the vertex set is I, and there are [Bij ]+ arrows
from i to j. Conversely, we can recover a skew-symmetric integer matrix B(Q) from a
quiver Q by B(Q)ij = Qij − Qji, where Qij is the number of arrows from i to j. This
gives a bijection between the set of I × I skew-symmetric integer matrices and the set of
quivers whose vertex set is I.

Definition 1.1.2. Let Q be a quiver, and let k be a vertex of Q. The quiver mutation µk

is a transformation that transforms Q into a quiver µk(Q) defined by the following three
steps:

(1) For each length two path i→ k → j, add a new arrow i→ j.
(2) Reverse all arrows incident to the vertex k.
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(3) Remove all 2-cycles.

Matrix mutations and quiver mutations are compatible. The transformation

ka

b

c

7−→
µk

ka

b

c

is an example of a quiver mutation.

1.2 Seed mutations
A set P is called a semifield if it is an abelian multiplicative group endowed with an
binary operation ⊕ which is commutative, associative, and distributive with respect to
the multiplication. We denote by ZP the group ring of P over Z. This ring is an integral
domain since the abelian multiplicative group of P is torsion-free. Throughout this paper,
a ZP-algebra means a commutative associative ZP-algebra with an identity element, and
we assume that a ZP-algebra homomorphism sends the identity element to the identity
element. We denote by QP the field of fractions of ZP. We fix a field F that is isomorphic
to the field of rational functions over QP in |I| variables.

Example 1.2.1. Let J be a finite index set.

(1) Let Trop(uj)j∈J be the abelian multiplicative group generated by the indetermi-
nates (uj)j∈J . We define a binary operation ⊕ on Trop(uj)j∈J by∏

j∈J

u
aj

j ⊕
∏
j∈J

u
bj
j =

∏
j∈J

u
min(aj ,bj)
j .

This binary operation makes Trop(uj)j∈J a semifield, which is called a tropical
semifield. If J is the empty set, Trop(uj)j∈J = {1} is called the trivial semifield.

(2) Let Qsf(uj)j∈J be the subset of Q(uj)j∈J consisting of all rational functions that
can be written as subtraction-free expressions in (ui)i∈J . The set Qsf(uj)j∈J is a
semifield with respect to the usual multiplication and addition, which is called a
universal semifield.

Definition 1.2.2. An (I-labeled) Y-seed in P is a pair (B, y), where

• B = (Bij)i,j∈I is an I × I skew-symmetrizable integer matrix,
• y = (yi)i∈I is an I-tuple in elements of P.

Definition 1.2.3. An (I-labeled) seed in F is a pair (B, y, x), where

• (B, y) is an I-labeled Y-seed in P,
• x = (xi)i∈I is an I-tuple of elements in F forming a free generating set, that is,
(xi)i∈I is algebraically independent over QP, and F = QP(xi)i∈I .
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For a seed (B, y, x), we refer to B as the exchange matrix, y as the coefficient tuple, x
as the cluster, yi’s as the coefficients, and xi’s as the cluster variables.

Definition 1.2.4. Let (B, y, x) be an I-labeled seed in F , and let k ∈ I. The seed
mutation µk : (B, y, x) 7→ (B′, y′, x′) is a transformation that transforms (B, x, y) into a
new seed (B′, y′, x′) defined as follows:

• B′ = (B′
ij)i,j∈I is given by (1.1.1),

• y′ = (y′i)i∈I is given by

y′i =


y−1
k if i = k,

yi(1⊕ yk)
−Bki if i 6= k and Bki ≤ 0,

yi(1⊕ y−1
k )−Bki if i 6= k and Bki ≥ 0,

(1.2.1)

• x′ = (x′i)i∈I is given by x′i = xi if i 6= k, and

x′k = x−1
k

(
yk

1⊕ yk

∏
j∈I

x
[Bjk]+
j +

1

1⊕ yk

∏
j∈I

x
[−Bjk]+
j

)
. (1.2.2)

We also say that the transformation µk : (B, y) 7→ (B′, y′) is the Y-seed mutation.

The relation (1.2.2) is called the exchange relation. Seed mutations are involutions,
that is, µk(µk(B, y, x)) = (B, y, x).

1.3 Cluster algebras
The I-regular tree TI is the tree such that all vertices have degree |I| and the edges
that are incident to each vertex are labeled by the elements in I. A cluster pattern is an
assignment of an I-labeled seed to every vertex in TI , such that the two seeds assigned
to the endpoints of any edge labeled by k ∈ I are obtained from each other by the seed
mutation µk.

Definition 1.3.1. The cluster algebra A associated with a given cluster pattern is the
ZP-subalgebra of F generated by all cluster variables in the pattern. We denote A =
A(B, y, x), where (B, y, x) is any seed in the underlying cluster pattern. We often denote
A(B, y, x) by A(B, x) when P is the trivial semifield.

The Laurent Phenomenon is the one of the most important properties of cluster alge-
bras.

Theorem 1.3.2 ([FZ02a, Theorem 3.1]). Let x be a cluster in a cluster pattern. Then
any cluster variables in the same cluster pattern is expressed as a Laurent polynomial in
x with coefficients in ZP.
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Chapter 2

Y-systems and T-systems

2.1 Y/T-systems in cluster algebras
In this section, we review T-systems and Y-systems in cluster algebras following [Nak11b].
Simply put, T-systems and Y-systems are algebraic relations that xk’s and yk’s, respec-
tively, at mutation indices satisfy.

2.1.1 Mutation loops

Let B = (Bij)i,j∈I be a skew-symmetrizable integer matrix. Let r be a positive integer.
For any sequence of indices i = (i1, . . . , ir) ∈ Ir, we denote the composition of mutations
µir ◦ · · · ◦ µi1 by µi. If Biaib = 0 for any a, b ∈ [1, r], it is easy to see that µi(B) =
µρ(i)(B) for any permutation ρ ∈ Sr, where Sr is the group of bijections on [1, r] and
ρ(i) := (iρ−1(1), . . . , iρ−1(r)). We say that a transformation B 7→ µi(B) is a simultaneous
mutation if Biaib = 0 for any a, b ∈ [1, r], and a 6= b implies ia 6= ib for any a, b ∈ [1, r].

Let i = (i1, . . . , ir) ∈ Ir be a sequence of indices. Consider a partition of i:

i = i(0) | i(1) | · · · | i(t− 1),

i(u) = (i(u)1, . . . , i(u)ru),
t−1∑
u=0

ru = r,
(2.1.1)

where we allow i(u) to be the empty sequence. Formally, a partition of i is an order-
preserving map [1, r] → {0, . . . , t − 1} where t is a positive integer. A partition (2.1.1)
is called a partition into simultaneous mutations if all B(u) 7→ B(u + 1) in the following
mutation sequence are simultaneous mutations:

B =: B(0)
µi(0)7−−−→ B(1)

µi(1)7−−−→ · · ·
µi(t−1)7−−−−→ B(t). (2.1.2)

Definition 2.1.1. We say that a quadruple γ = (B, d, i, ν) is a mutation loop if

• B = (Bij)i,j∈I is a skew-symmetrizable integer matrix,
• d = (di)i∈I is a right symmetrizer of B,
• i = (i1, . . . , ir) is a sequence of elements in I equipped with a partition into simul-
taneous mutations i = i(0) | i(1) | · · · | i(t− 1),

• ν : I → I is a bijection such that µi(B) = ν(B) and d = ν(d).
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The integer r is called the length of γ. Many examples of mutation loops are given in
[Nak11b, Section 3].

The partition (2.1.1) decomposes [1, r] into t parts. We define the subgroupSr0,...,rt−1 ⊆
Sr, which is isomorphic to Sr0 ×· · ·×Srt−1

, consisting of permutations that fix the each
part as a set.

Definition 2.1.2. We say that two mutation loops γ = (B, d, i, ν) and γ′ = (B′, d′, i′, ν′),
where i = i(0) | · · · | i(t− 1) and i′ = i′(0) | · · · | i′(t′ − 1), are equivalent if there exists a
bijection f : I → I ′ between the index sets of B and B′, and a permutation ρ ∈ Sr0,...,rt−1

such that

• B′ = f(B),
• d′ = f(d),
• t = t′ and i′(u) = f(ρ(i(u))) for each u = 0, . . . , t− 1,
• ν′ = f ◦ ν ◦ f−1.

For any mutation loop γ = (B, d, i, ν), we have the following infinite length mutation
sequence that extends (2.1.2):

· · ·
µi(−2)7−−−−→ B(−1)

µi(−1)7−−−−→
B(0)

µi(0)7−−−→ B(1)
µi(1)7−−−→ · · ·

µi(t−2)7−−−−→ B(t− 1)
µi(t−1)7−−−−→

B(t)
µi(t)7−−−→ B(t+ 1)

µi(t+1)7−−−−→ · · ·
µi(2t−2)7−−−−−→ B(2t− 1)

µi(2t−1)7−−−−−→
B(2t)

µi(2t)7−−−→ · · ·

(2.1.3)

where B(nt+k) = νn(B(k)) and i(nt+k) = νn(i(t+k)) for any n ∈ Z and 0 ≤ k ≤ t−1.
Let Pγ be the set defined by

Pγ = {(i, u) ∈ I × Z | i ∈ i(u)}.

Elements in Pγ are called mutation points of γ. We also define an integer λ(i, u) for any
(i, u) ∈ I × Z by

λ(i, u) = min{v ∈ Z≥0 | (i, u+ v) ∈ Pγ}

if there exists v ∈ Z≥0 such that (i, u + v) ∈ Pγ . Otherwise, we set λ(i, u) = ∞. The
number λ(i, u) is called the latency of (i, u). For any (i, u) ∈ I × Z with λ(i, u) < ∞, we
define an element s(i, u) ∈ Pγ by

s(i, u) =

{
(i, u+ λ(i, u)) if (i, u) /∈ Pγ ,

(i, u+ 1 + λ(i, u+ 1)) if (i, u) ∈ Pγ .

The element s(i, u) is called the next mutation point of (i, u).
A mutation loop is called complete if all latencies are finite, that is, λ(i, u) <∞ for any

(i, u) ∈ I×Z, or equivalently, for any (i, 0) ∈ I×{0}. In the rest of this paper, we usually
assume that mutation loops are complete.
In order to describe the T-system and the Y-system so that the relationship between

them is apparent, we need another parameterization of the mutation points. For any
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elements (i, u), (j, v) ∈ Pγ , we write (i, u) ∼ (j, v) if there exists g ∈ Z such that j = νg(i)
and v = u+ gt. Let π : Pγ → [1, r] be the surjective map defined by π(i, u) = a where a
is the unique element in [1, r] such that (i, u) ∼ (ia, v) and 0 ≤ v ≤ t− 1. We define a set
Rγ by

Rγ = {(π(i, u), u) | (i, u) ∈ Pγ}. (2.1.4)

Lemma 2.1.3. The map Pγ → Rγ defined by (i, u) 7→ (π(i, u), u) is a bijection.

Proof. The surjectivity is apparent since π is surjective. We assume that (i, u), (j, u) ∈ Pγ

satisfy π(i, u) = π(j, u). Then we obtain (i, u) ∼ (j, u), and this implies that i = j by the
definition of the equivalence relation.

Let σ ∈ Sr be the bijection defined by

σ(a) = π(s(i, u)), (2.1.5)

where (i, u) ∈ π−1(a) is any mutation point that maps to a by π. The definition of σ does
not depend on the choice of (i, u). For any a ∈ [1, r], we denote by λa the positive integer
1 + λ(i, u+ 1) where (i, u) ∈ π−1(a). In other words, λa is the positive integer satisfying
s(i, u) = (i, u+ λa). The definition of λa also does not depend on the choice of (i, u).

2.1.2 Y-systems in cluster algebras

Let us describe a Y-system associated with a mutation loop γ. For any Y-seed (B, y), we
have the following infinite length sequence of Y-seeds:

· · · (B(−1), y(−1))
µi(−1)7−−−−→

(B(0), y(0))
µi(0)7−−−→ · · · (B(t− 1), y(t− 1))

µi(t−1)7−−−−→
(B(t), y(t))

µi(t)7−−−→ · · ·
(2.1.6)

where (B(0), y(0)) = (B, y) and we define negative ones using the involution property of
mutations. We define an element Ya(u) ∈ P for any (a, u) ∈ Rγ by

Ya(u) = yi(u), (2.1.7)

where i ∈ I is a unique index such that (i, u) ∈ Pγ and a = π(i, u).
Let N∨

0 = (
∑

p∈Z ň
0
ab;pz

p)a,b∈[1,r] ∈ Matr×r(Z[z]) be the r × r matrix whose entries are
integer coefficients polynomials in the variable z defined by∑

p∈Z

ň0ab;pz
p = δab + δa′bz

λa′ , (2.1.8)

where a′ = σ−1(a). We also define two matrices N∨
+ = (

∑
p∈Z ň

+
ab;pz

p)a,b∈[1,r] and N
∨
− =

(
∑

p∈Z ň
−
ab;pz

p)a,b∈[1,r] in Matr×r(Z[z]) by∑
p∈Z

ň±ab;pz
p =

∑
(j,v)∈Pγ

s(k,v)=(k,u),π(j,v)=b

[±Bjk(v)]+z
λ(k,v), (2.1.9)

where (k, u) ∈ π−1(a). The definition of N∨
± does not depend on the choices of (k, u).
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k

j1

j2

j3

uv1v2v3u− λa′

λ(k, v1)

Fig. 2.1 A schematic description of a Y-system. A black point represents a mutation
point. An arrow in a plane from (resp. to) a mutation point (j, v) to (resp. from) the
right arrow that ends at (k, u) indicates that [Bjk(v)]+ ̸= 0 (resp. [−Bjk(v)]+ ̸= 0).

Proposition 2.1.4 ([Nak11b, Section 5.5]). For any mutation loop γ, the family of ele-
ments (Ya(u))(a,u)∈Rγ

satisfy the following relation in P for any (a, u) ∈ Rγ :

∏
b,p

Yb(u− p)ň
0
ab;p =

∏
b,p

(
1⊕ Yb(u− p)

)ň−
ab;p∏

b,p

(
1⊕ Yb(u− p)−1

)ň+
ab;p

,

where
∏

b,p =
∏r

b=1

∏∞
p=0.

We call the family of relations in Proposition 2.1.4 the Y-system associated with γ,
and the triple of matrices (N∨

γ,0, N
∨
γ,+, N

∨
γ,−) the Y-system triple of γ. From (2.1.8), the

left-hand side in the Y-system can be rewritten as∏
b,p

Yb(u− p)ň
0
ab;p = Ya(u)Ya′(u− λa′).

If we define elements P±
a (u) ∈ P by

P+
a (u) =

Ya(u)

1⊕ Ya(u)
, P−

a (u) =
1

1⊕ Ya(u)
, (2.1.10)

the relation in Proposition 2.1.4 can be written in a simpler form as∏
b,p

P+
b (u− p)ň

0
ab;p−ň+

ab;p =
∏
b,p

P−
b (u− p)ň

0
ab;p−ň−

ab;p .

Figure 2.1 is a schematic description of a Y-system.
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k

j1

j2

j3

u v1 v2 v3u+ λa

λ(j1, v1)

Fig. 2.2 A schematic description of a T-system. A black point represents a mutation
point. An arrow in the plane from (resp. to) the mutation point (k, u) to (resp. from)
a right arrow that ends at (j, v) indicates that [−Bjk(u)]+ ̸= 0 (resp. [Bjk(u)]+ ̸= 0).

2.1.3 T-systems in cluster algebras

Next we are going to describe T-systems. Let γ be a complete mutation loop. For any
seed (B, y, x), we have the following infinite length sequence of seeds:

· · · (B(−1), y(−1), x(−1))
µi(−1)7−−−−→

(B(0), y(0), x(0))
µi(0)7−−−→ · · · (B(t− 1), y(t− 1), x(t− 1))

µi(t−1)7−−−−→
(B(t), y(t), x(t))

µi(t)7−−−→ · · ·
(2.1.11)

where (B(0), y(0), x(0)) = (B, y, x). We define Ya(u) ∈ P and Ta(u) ∈ F for any (a, u) ∈
Rγ by

Ya(u) = yi(u), Ta(u) = xi(u), (2.1.12)

where i ∈ I is a unique index such that (i, u) ∈ Pγ and a = π(i, u).
We define a matrix Nγ,0 = (

∑
p∈Z n

0
ab;pz

p)1≤a,b≤r ∈ Matr×r(Z[z]) by∑
p∈Z

n0ba;pz
p = δab + δσ(a)bz

λa . (2.1.13)

We also define two matricesNγ,+ = (
∑

p∈Z n
+
ab;pz

p)a,b∈[1,r] andNγ,− = (
∑

p∈Z n
−
ab;pz

p)a,b∈[1,r]
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in Matr×r(Z[z]) by ∑
p∈Z

n±ba;pz
p =

∑
j∈I

π(s(j,u))=b

[∓Bjk(u)]+z
λ(j,u), (2.1.14)

where (k, u) ∈ π−1(a). The definition of N± does not depend on the choices of (k, u).

Proposition 2.1.5 ([Nak11b, Section 5.5]). For any complete mutation loop, the family
of elements (Ya(u))(a,u)∈Rγ

and (Ta(u))(a,u)∈Rγ
satisfy the following relation in F for any

(a, u) ∈ Rγ :∏
b,p

Tb(u+ p)n
0
ba;p = P+

a (u)
∏
b,p

Tb(u+ p)n
−
ba;p + P−

a (u)
∏
b,p

Tb(u+ p)n
+
ba;p ,

where
∏

b,p =
∏r

b=1

∏∞
p=0 and P±

a (u) ∈ P are defined by (2.1.10).

We call the family of relations in Proposition 2.1.5 the T-system associated with γ,
and the triple of matrices (Nγ,0, Nγ,+, Nγ,−) the T-system triple of γ. From (2.1.13), the
left-hand side in the T-system can be rewritten as∏

b,p

Tb(u+ p)n
0
ba;p = Ta(u)Tσ(a)(u+ λa).

Figure 2.2 is a schematic description of a T-system.

2.1.4 Relation between Y-systems and T-systems

Let γ = (B, d, i, ν) be a mutation loop.

Lemma 2.1.6. The family of positive integers (di(u))(i,u)∈I×Z defined by di(u) = di
satisfies the following:

(1) Bij(u)dj(u) = −Bji(u)di(u) for any i, j ∈ I and u ∈ Z,
(2) di(u) = dj(v) for any (i, u), (j, v) ∈ Pγ such that π(i, u) = π(j, v).

Proof. (1) holds since mutations preserve a symmetrizer. (2) follows from d = ν(d).

From Lemma 2.1.6, the positive integers d′1, . . . , d
′
r defined by d′a = di(u) where (i, u) ∈

π−1(a) do not depend on the choices of (i, u), and d′a = di(u) for any (i, u) ∈ I × Z such
that π(s(i, u)) = a. We denote byDγ the positive integer diagonal matrix diag(d′1, . . . , d

′
r).

Proposition 2.1.7 (cf. Proposition 5.13, [Nak11b]). Let (N∨
γ,0, N

∨
γ,+, N

∨
γ,−) be the Y-

system triple and (Nγ,0, Nγ,+, Nγ,−) be the T-system triple of a complete mutation loop
γ. Then we have

N∨
γ,0 = Nγ,0

and

DγN
∨
γ,ε = Nγ,εDγ

for any ε ∈ {0,+,−}.
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Proof. The first identity follows from∑
p

ň0ab;pz
p = δab + δa′bz

λa′ = δba + δb̂az
λb =

∑
p

n0ab;pz
p.

The second identity for ε = 0 follows from Lemma 2.1.6. We now the second identity for
ε = ±. Let (k, u) ∈ π−1(b) and (k′, u′) ∈ π−1(a). Then we have∑

p

ň±ab;pz
p =

∑
(j,v)∈Pγ

s(k′,v)=(k′,u′),π(j,v)=b

[±Bjk′(v)]+z
λ(k,v)

=
∑
j′∈I

π(s(j′,u))=a

[±Bkj′(u)]+z
λ(j′,u).

On the other hand, Lemma 2.1.6 implies that∑
p

n±ab;pz
p =

∑
j∈I

π(s(j,u))=a

[∓Bjk(u)]+z
λ(j,u)

=
∑
j∈I

π(s(j,u))=a

[±dj(u)dk(u)−1Bkj(u)]+z
λ(j,u)

= d′a(d
′
b)

−1
∑
j∈I

π(s(j,u))=a

[±Bkj(u)]+z
λ(j,u).

For any matrix A, we denote the transpose of A by AT. For any A ∈ Matr×r(Z[z±1]),
we define a matrix A† ∈ Matr×r(Z[z±1]) by A† = (A|z=z−1)T. Clearly, we have (A†)† = A
and (AB)† = B†A† for any A,B ∈ Matr×r(Z[z±1]).

Let (A∨
γ,+, A

∨
γ,−) and (Aγ,+, Aγ,−) be the pairs of matrices defined by A∨

γ,± = N∨
γ,0 −

N∨
γ,± and Aγ,± = Nγ,0 − Nγ,±, respectively. We call them the Y-system pair and the

T-system pair of γ. These pairs of matrices describe the following relation between the
Y-system and the T-system:

Theorem 2.1.8. Let γ be a complete mutation loop, and (A∨
γ,+, A

∨
γ,−) and (Aγ,+, Aγ,−)

be the Y-system pair and the T-system pair of γ, respectively. Then we have

A∨
γ,+A

†
γ,− = A∨

γ,−A
†
γ,+.

Proof. The claim is equivalent to the following equality:

N∨
0 N

†
− −N∨

0 N
†
+ −N∨

−N
†
0 +N∨

+N
†
0 = N∨

+N
†
− −N∨

−N
†
+. (2.1.15)

Let a, b ∈ [1, r] and p ∈ Z. Let us choose an element (i, u) ∈ π−1(a). Let a′ = σ−1(a) and
b′ = σ−1(b). Let pa = λa′ and pb = λb′ . Let v = u− p, u′ = u− pa, and v′ = v− pb. Then
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the (ab; p)-th entry in the left-hand side in (2.1.15) is given by

n−ba;−p + n−ba′;pa−p − n+ba;−p − n+ba′;pa−p − ň−ab;p − ň−ab′;p+pb
+ ň+ab;p + ň+ab′;p+pb

=


+n−ba;−p −n+ba;−p −ň−ab′;p+pb

+ň+ab′;p+pb
if u ≤ v and u′ ≤ v′,

+n−ba;−p −n+ba;−p +n−ba′;pa−p −n+ba′;pa−p if u ≤ v and v′ ≤ u′,

−ň−ab;p +ň+ab;p −ň−ab′;p+pb
+ň+ab′;p+pb

if v ≤ u and u′ ≤ v′,

−ň−ab;p +ň+ab;p +n−ba′;pa−p −n+ba′;pa−p if v ≤ u and v′ ≤ u′,

=
∑
j∈I

(j,v)∈Pγ ,π(j,v)=b


Bji(u) +Bji(v

′) if u ≤ v and u′ ≤ v′,

Bji(u) +Bji(u
′) if u ≤ v and v′ ≤ u′,

Bji(v) +Bji(v
′) if v ≤ u and u′ ≤ v′,

Bji(v) +Bji(u
′) if v ≤ u and v′ ≤ u′,

=
∑
j∈I

(j,v)∈Pγ ,π(j,v)=b

(Bji(min(u, v)) +Bji(max(u′, v′))).

On the other hand, the (ab; p)-th entry in the right-hand side in (2.1.15) is given by

r∑
c=1

∑
w∈Z

(ň+ac;u−wn
−
bc;v−w − ň−ac;u−wn

+
bc;v−w)

=
∑

j∈I,(k,w)∈Pγ

(j,v)∈Pγ ,π(j,v)=b

max(u′,v′)<w<min(u,v)

([Bki(w)]+[Bjk(w)]+ − [−Bjk(w)]+[−Bki(w)]+).

These two entries coincide since

Bji(min(u, v)) +Bji(max(u′, v′))

=
∑

(k,w)∈Pγ

max(u′,v′)<w<min(u,v)

([Bki(w)]+[Bjk(w)]+ − [−Bjk(w)]+[−Bki(w)]+)

by the rule of matrix mutations (1.1.1).

2.2 Axiomatic approach to Y/T systems
In this section, we develop an axiomatic approach to Y-systems and T-systems based on
the paper [Miz20a] written by the author of thesis.

2.2.1 T-data

Let r be a positive integer. As in the last section, we define an involution
† : Matr×r(Q(z)) → Matr×r(Q(z)) by A† = (A|z=z−1)T.
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For a triple (N0, N+, N−) of the matrices in Matr×r(Z[z]) whose entries are given by

Nε =

( ∑
p∈Z≥0

nεab;pz
p

)
a,b∈[1,r]

, (2.2.1)

we consider the following conditions:

(N1) n0ab;p = δabδp0 + δaσ(b)δppa for some σ ∈ Sr and pa ∈ Z>0,

(N2) n+ab;p ≥ 0 and n−ab;p ≥ 0 for any a, b, p,

(N3) n+ab;p = 0 and n−ab;p = 0 unless 0 < p < pa,

(N4) n+ab;pn
−
ab;p = 0 for any a, b, p.

Definition 2.2.1. We say that a triple of matrices α = (A+, A−, D) is a T-datum of
size r if A± can be written as A± = N0 − N± by a triple of matrices (N0, N+, N−)
in Matr×r(Z[z]) satisfying (N1)–(N4), and D is a positive integer diagonal matrix that
satisfies the following conditions:

• N0D = DN0,
• D−1N±D ∈ Matr×r(Z[z]),
• A+DA

†
− = A−DA

†
+.

It is clear that the triple (N0, N+, N−) that satisfies the conditions (N1)–(N4) is uniquely
recovered from (A+, A−) as follows: N0 = [A+]+ = [A−]+, N+ = [−A+]+, and N− =
[−A−]+, where we take [ ]+ for each coefficient. Note that both matrices A+ and A− have
non-zero determinants since their determinants are monic polynomials with constant terms
1, which follows from the conditions (N1) and (N3).

We say that the last equation

A+DA
†
− = A−DA

†
+ (2.2.2)

in Definition 2.2.1 is the symplectic relation due to the following lemma, which can be
easily verified:

Lemma 2.2.2. Let A+, A− ∈ Matr×r(Z[z±1]) be matrices with non-zero determinants,
and D be a positive integer diagonal matrix. Then the following conditions are equivalent:

(1) A+DA
†
− = A−DA

†
+.

(2) A+DA
†
− is a †-invariant.

(3) A−DA
†
+ is a †-invariant.

(4) (A−)
−1A+D is a †-invariant.

(5) (A+)
−1A−D is a †-invariant.

(6) D−1(A−)
−1A+ is a †-invariant.

(7) D−1(A+)
−1A− is a †-invariant.

(8) The rows of the r×2r matrices [A+ A−] are pairwise orthogonal with respect to the
symplectic pairing 〈 , 〉 : (Z[z±1])2r × (Z[z±1])2r → Z[z±1] defined by〈[

f(z)
g(z)

]
,

[
f ′(z)
g′(z)

]〉
=
[
f(z)T g(z)T

] [ O D
−D O

] [
f ′(z−1)
g′(z−1)

]
,
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where f(z), g(z), f ′(z), g′(z) ∈ (Z[z±1])r.

Let α = (A+, A−, D) be a T-datum. Then the triple α∨ = (A∨
+, A

∨
−, D

∨) defined by
N∨

ε = D−1NεD and D∨ = δD−1 where δ is the product of the greatest common divisor
and the least common multiple of all the entries in D, is also a T-datum. The T-datum
α∨ is called the Langlands dual of α. Clearly, we have α∨∨ = α. We write the entries of
N∨

ε as

N∨
ε =

( ∑
p∈Z≥0

ňεab;pz
p

)
a,b∈[1,r]

. (2.2.3)

Definition 2.2.3. Let α = (A+, A−, D) be a T-datum of size r. We say that a subset
R ⊆ [1, r]× Z is consistent for α if the following conditions are satisfied:

(R1) If (a, u) ∈ R and n0ab;p, n
+
ab;p, or n

−
ab;p 6= 0, then (b, u− p) ∈ R.

(R2) If (a, u) ∈ R and n0ba;p, n
+
ba;p, or n

−
ba;p 6= 0, then (b, u+ p) ∈ R.

(R3) There exists a positive integer t such that R = R(t) and

[1, r]× Z =

t−1⊔
k=0

R(k),

where R(k) := {(a, u+ k) | (a, u) ∈ R}.

For example, [1, r]× Z itself is always consistent since (R1) and (R2) are obvious, and
(R3) is satisfied by setting t = 1. Note that the positive integer t in (R3) is uniquely
determined from R. In the conditions (R1) and (R2), we can replace n with ň. From
(N1) together with (R1) and (R2), we have

(a, u) ∈ R if and only if (σ(a), u+ pσ(a)) ∈ R

if and only if (σ−1(a), u− pa) ∈ R.

Definition 2.2.4. Let (α,R) and (α′, R′) be pairs of T-data of size r and consistent
subsets for them. They are called equivalent if there exists a permutation ρ ∈ Sr such
that A′

± = ρ(A±), D
′ = ρ(D), and R′ = ρ(R), where ρ(R) = {(ρ(a), u) | (a, u) ∈ R}.

Definition 2.2.5. Let α be a T-datum of size r, and R ⊆ [1, r] × Z be a consistent
subset for α. We say that a family of elements (Ya(u))(a,u)∈R is a solution of the Y-system
associated with (α,R) in a semifield P if Ya(u) ∈ P and the following relation holds in P
for any (a, u) ∈ R:

∏
b,p

Yb(u− p)ň
0
ab;p =

∏
b,p

(
1⊕ Yb(u− p)

)ň−
ab;p∏

b,p

(
1⊕ Yb(u− p)−1

)ň+
ab;p

, (2.2.4)

where
∏

b,p =
∏r

b=1

∏∞
p=0.
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For any solution of the Y-system associated with (α,R) in P, we define elements P±
a (u) ∈

P ((a, u) ∈ R) by

P+
a (u) =

Ya(u)

1⊕ Ya(u)
, P−

a (u) =
1

1⊕ Ya(u)
.

Definition 2.2.6. Let α be a T-datum of size r, and R ⊆ [1, r] × Z be a consistent
subset for α. Let Y = (Ya(u))(a,u)∈R be a solution of the Y-system associated with
(α,R) in a semifield P. Let T(α,R, Y ) be the ZP-algebra generated by the indeterminates
(Ta(u)

±1)(a,u)∈R subject to the relation∏
b,p

Tb(u+ p)n
0
ba;p = P+

a (u)
∏
b,p

Tb(u+ p)n
−
ba;p + P−

a (u)
∏
b,p

Tb(u+ p)n
+
ba;p (2.2.5)

for any (a, u) ∈ R, together with Ta(u)Ta(u)
−1 = 1. We define T◦(α,R, Y ) to be the

subalgebra of T(α,R, Y ) generated by (Ta(u))(a,u)∈R. We say that T◦(α,R, Y ) is the
T-algebra associated with (α,R, Y ). We often denote T◦(α,R, Y ) by T◦(α) when R =
[1, r]× Z and P is the trivial semifield.

The family of relations (2.2.4) is called the Y-system associated with (α,R), and the
family of relations (2.2.5) is called the T-system associated with (α,R, Y ).

Example 2.2.7 (Somos-4 recurrence). The triple of 1 × 1 matrices α = (A+, A−, D)
defined by

A+ =
[
1− 2z2 + z4

]
, A− =

[
1− z − z3 + z4

]
, D =

[
1
]

is a T-datum, and the whole set R = {1} × Z is consistent for α. The family Y =
(Y (u))(1,u)∈R defined by Y (u) = c1c

−1
2 for any u ∈ Z is a solution of the Y-system

associated with α in Trop(c1, c2), where we denote Y1(u) by Y (u). The family of relations

T (u)T (u+ 4) = c1T (u+ 1)T (u+ 3) + c2T (u+ 2)2

for u ∈ Z is the T-system associated with (α,R, Y ), where we denote T1(u) by T (u). This
is called the Somos-4 recurrence [FZ02b].

Example 2.2.8 (Bipartite belt). Let A = (2δab − nab)a,b∈[1,r] be a symmetrizable gener-
alized Cartan matrix, and D be a right symmetrizer of A. Suppose that A is bipartite,
that is, there exists a function ε : [1, r] → {1,−1} such that nab > 0 implies ε(a) 6= ε(b)
for any a, b ∈ [1, r]. Let N = 2Ir −A. Then the triple of r × r matrices α = (A+, A−, D)
defined by

A+ = (1 + z2)Ir, A− = (1 + z2)Ir − zN

is a T-datum since

A+DA
†
− −A−DA

†
+ = (z + z−1)(−DNT +ND) = 0,

and the set R ⊆ [1, r]× Z defined by

R = {(a, u) ∈ [1, r]× Z | ε(a) = (−1)u−1}
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u 0 1 2 3 4 5 6

Y1(u) y1
1⊕ y2 ⊕ y1y2

y1

1

y2
(1⊕ y1)y2

Y2(u) (1⊕ y1)y2
1⊕ y2
y1y2

y1

T1(u) x1
y1x2 + 1

(1⊕ y1)x1

x1 + y2
(1⊕ y2)x2

x2

T2(u) x2
y1y2x2 + x1 + y2

(1⊕ y2 ⊕ y1y2)x1x2
x1

Table 2.1 The bipartite belt associated with the Cartan matrix of type A2.

is consistent for α. The family of relations

Ya(u)Ya(u− 2) =
r∏

b=1

(1⊕ Yb(u− 1))nba

for (a, u) ∈ R is the Y-system associated with α, and

Ta(u)Ta(u+ 2) =
Ya(u)

∏r
b=1 Tb(u+ 1)nba + 1

1⊕ Ya(u)

for (a, u) ∈ R is the T-system associated with (α,R, Y ). The discrete dynamical system
given by these relations are called the bipartite belt associated with A [FZ07, Section 8].

If A is the Cartan matrix of type A2 for instance, the triple of matrices in α is given by

A+ =

[
1 + z2 0

0 1 + z2

]
, A− =

[
1 + z2 −z
−z 1 + z2

]
, D =

[
1 0
0 1

]
.

Table 2.1 is the bipartite belt associated with the Cartan matrix of type A2 with ε(1) = −1
and ε(2) = 1, where y1 and y2 are arbitrary elements in the underlying semifield P, and
we write T1(0) and T2(1) as x1 and x2, respectively.

2.2.2 T-data from mutation loops

Let us see that we can obtain T-data from mutation loops. Let γ be a complete mutation
loop of length r. Let (Nγ,0, Nγ,+, Nγ,−) be the T-system triple and (Aγ,+, Aγ,−) be the
T-system pair of γ, which are defined in Section 2.1. Let Dγ be the positive integer
diagonal matrix in Proposition 2.1.7.

Lemma 2.2.9. The triple (Nγ,0, Nγ,+, Nγ,−) satisfies the conditions (N1)–(N4).

Proof. The condition (N1) is satisfied if pa = λσ−1(a) and σ is as in (2.1.5). The condition
(N2) is obvious from the definition. The definition (2.1.14) implies (N3) since 0 < λ(j, u) <
λσ−1(b) if π(s(j, u)) = b and (j, u) /∈ Pγ . The definition (2.1.14) also implies (N4) since at
least one of [b]+ and [−b]+ is zero for any integer b.
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Proposition 2.2.10. The triple αγ := (Aγ,+, Aγ,−, Dγ) is a T-datum.

Proof. We have DγNγ,0 = DγN
∨
γ,0 = Nγ,0Dγ , and D

−1
γ Nγ,±Dγ = N∨

γ,± ∈ Matr×r(Z[z])
by Proposition 2.1.7. We also have

Aγ,+DγA
†
γ,− −Aγ,−DγA

†
γ,+ = DγA

∨
γ,+D

−1
γ DγA

†
γ,− −DγA

∨
γ,−D

−1
γ DγA

†
γ,+

= Dγ(A
∨
γ,+A

†
γ,− −A∨

γ,−A
†
γ,+)

= 0

by Proposition 2.1.7 and Theorem 2.1.8.

Let D∨
γ the diagonal matrix defined by D∨

γ = δD−1
γ where δ is the product of the

greatest common divisor and the least common multiple of all the entries in Dγ .

Corollary 2.2.11. The triple α∨
γ := (A∨

γ,+, A
∨
γ,−, D

∨
γ,−) is a T-datum, and it is the

Langlands dual of αγ .

Proposition 2.2.12. The subset Rγ ⊆ [1, r]× Z defined in (2.1.4) is consistent for αγ .

Proof. The conditions (R1) and (R2) follow from Proposition 2.1.4 and 2.1.5, respectively.
The condition (R3) is satisfied if we define t in (R3) as the length of the partition of i.

2.2.3 Mutation loops from T-data

In this section, we prove all T-data can be obtained from mutation loops up to equivalence.

Theorem 2.2.13. Suppose that α = (A+, A−, D) is a T-datum of size r, and R ⊆ [1, r]×Z
is consistent for α. Then there exists a complete mutation loop γ of length r such that
(αγ , Rγ) and (α,R) are equivalent, where αγ = (Aγ,+, Aγ,−, Dγ).

The rest of Section 2.2.3 is devoted to the proof of Theorem 2.2.13. Let p1, . . . , pr be
positive integers and σ be the permutation of [1, r] in (N1). Let ψ : [1, r]×Z → [1, r]×Z
be the bijection defined by ψ(a, u) = (a, u+1). We define a family of subsets R(k) (k ∈ Z)
by R(k) = ψk(R) as in Definition 2.2.3. We also define a subset R(k)(u) ⊆ R(k) for any
u ∈ Z by R(k)(u) = {(a, u + p) ∈ R(k) | 0 ≤ p < pa}. We denote R(0)(u) by R(u).
The map ψ restricts to a bijection ψ|R(k)(u) : R(k)(u) → R(k+1)(u + 1). We will write

this restriction simply ψ when no confusion can arise. Let t be the integer in (R3) in
Definition 2.2.3. Then we have R(k)(u) = R(k+t)(u). In particular, the map ψt restricts
to a bijection ψt|R(k)(u) : R(k)(u) → R(k)(u + t). We also define a family of bijections

ϕu : R(u) → R(u+ 1) (u ∈ Z) by

ϕu(a, u+ p) =

{
(a, u+ p) if p 6= 0,

(σ(a), u+ pσ(a)) if p = 0.
(2.2.6)

It is easy to check that ψt and ϕ commute in the sense that ψt ◦ ϕu = ϕu+t ◦ ψt. We
define R0(u) ⊆ R(u) by R0(u) = {(a, u + p) ∈ R(u) | p = 0}, which is endowed with the
linear order coming from the standard linear order on [1, r].
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For any u ∈ Z, we define an R(u)×R(u) matrix B̄(u) by

B̄(a,u+p)(b,u+q)(u) = −n+ab;p−q + n−ab;p−q + ň+ba;q−p − ň−ba;q−p

+
r∑

c=1

min(p,q)∑
v=0

(
n+ac;p−vň

−
bc;q−v − n−ac;p−vň

+
bc;q−v

)
,

(2.2.7)

where n± and ň± are defined in (2.2.1) and (2.2.3), respectively. Note that B̄(u) and B̄(v)
may be different matrices if u 6= v, even though they have the same expression (2.2.7).
Rather, these matrices are related by mutations, as the following lemma shows:

Lemma 2.2.14. B̄(u+ 1) = ϕu(µR0(u)(B̄(u))) for any u ∈ Z.

Proof. Let B̄′(u) = µR0(u)(B̄(u)) and (a, u+ p), (b, u+ q) ∈ R(u). Then we have

B̄′
(a,u+p)(b,u+q)(u) =


−B̄(a,u+p)(b,u+q)(u) if p or q = 0,

B̄(a,u+p)(b,u+q)(u)−
r∑

c=1

(
n+ac;pň

−
bc;q − n−ac;pň

+
bc;q

)
if p, q > 0,

(2.2.8)

since ∑
c∈[1,r]

(c,u)∈R0(u)

(
[B̄(a,u+p)(c,u)(u)]+[B̄(c,u)(b,u+q)(u)]+

− [−B̄(a,u+p)(c,u)(u)]+[−B̄(c,u)(b,u+q)(u)]+
)

=
r∑

c=1

(
n−ac;pň

+
bc;q − n+ac;pň

−
bc;q

)
by (N2), (N4), and (R1).

The proof is divided into the following cases: (i) p, q > 0, (ii) p = 0 and q > 0, (iii) p > 0
and q = 0, and (iv) p = q = 0. For the case (i), we have

B̄(a,u+p)(b,u+q)(u)− B̄(a,u+p)(b,u+q)(u+ 1) =
r∑

c=1

(
n+ac;pň

−
bc;q − n−ac;pň

+
bc;q

)
by (2.2.7), and this yields the desired equality since ϕu(a, u+p) = (a, u+p) and ϕu(b, u+
q) = (b, u+ q). For the case (ii), we have ϕu(a, u) = (â, u+ pâ) where â = σ(a). Then we
have

B̄′
(a,u)(b,u+q)(u) = −B̄(a,u)(b,u+q)(u) = −ň+ba;q + ň−ba;q

and

B̄(â,u+pâ)(b,u+q)(u+ 1) = −n+âb;pâ−q + n−âb;pâ−q + ň+bâ;q−pâ
− ň−bâ;q−pâ

+

r∑
c=1

min(pâ,q)∑
v=1

(
n+âc;pâ−vň

−
bc;q−v − n−âc;pâ−vň

+
bc;q−v

)
.
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These coincide by the (bâ; q − pâ)-th entry in the symplectic relation, together with (N1)

and (N3). For the case (iii), we have ϕu(b, u) = (b̂, u+ pb̂) where b̂ = σ(b). Then we have

B̄′
(a,u+p)(b,u)(u) = −B̄(a,u+p)(b,u)(u) = n+ab;p − n−ab;p

and

B̄(a,u+p)(b̂,u+pb̂)
(u+ 1) = −n+

ab̂;p−pb̂

+ n−
ab̂;p−pb̂

+ ň+
b̂a;pb̂−p

− ň−
b̂a;pb̂−p

+

r∑
c=1

min(p,pb̂)∑
v=1

(
n+ac;p−vň

−
b̂c;pb̂−v

− n−ac;p−vň
+

b̂c;pb̂−v

)
These coincide by the (ab̂; p− pb̂)-th entry in the symplectic relation, together with (N1)

and (N3). For the case (iv), we have ϕu(a, u) = (â, u + pâ) and ϕu(b, u) = (b̂, u + pb̂).
Then we have

B̄′
(a,u)(b,u)(u) = −B̄(a,u)(b,u)(u) = 0.

On the other hand, we have

B̄(â,u+pâ)(b̂,u+pb̂)
(u+ 1) = −n+

âb̂;pâ−pb̂

+ n−
âb̂;pâ−pb̂

+ ň+
b̂â;pb̂−pâ

− ň−
b̂â;pb̂−pâ

+
r∑

c=1

min(pâ,pb̂)∑
v=1

(
n+âc;pâ−vň

−
b̂c;pb̂−v

− n−âc;pâ−vň
+

b̂c;pb̂−v

)
= 0

by the (âb̂; pâ − pb̂)-th entry in the symplectic relation, together with (N1) and (N3).

Lemma 2.2.15. B̄(u+ t) = ψt(B̄(u)) for any u ∈ Z.

Proof. Since R(u) = R(u + t), the lemma follows from the fact that B̄(u + t) and B̄(u)
have the same expression (2.2.7).

We define an index set I by I = R(0), and define an I × I integer matrices B by
B = B̄(0), that is, B = (B(a,p)(b,q))(a,p),(b,q)∈R(0) and

B(a,p)(b,q) = −n+ab;p−q + n−ab;p−q + ň+ba;q−p − ň−ba;q−p

+

r∑
c=1

min(p,q)∑
v=0

(
n+ac;p−vň

−
bc;q−v − n−ac;p−vň

+
bc;q−v

)
.

(2.2.9)

We define a tuple of positive integer d = (da,u)(a,u)∈R(u) by da,u = da, where da is the

a-th entry in D. We also define i = i(0) | · · · | i(t−1) by i(u) = (ϕu−1 ◦· · ·◦ϕ0)
−1(R0(u)),

where each i(u) is endowed with the linear order coming from the linear order on R0(u).
Finally, we define ν = (ϕt−1 ◦ · · · ◦ ϕ0)

−1 ◦ ψt.

Lemma 2.2.16. γ = (B, d, i, ν) is a complete mutation loop of length r.
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Proof. It is easy to check that B is a skew-symmetrizable matrix with the symmetrizer d.
Let us denote by ~ϕu the composition ϕu−1 ◦ · · · ◦ ϕ0. We now prove

(µi(u−1) ◦ · · · ◦ µi(0))(B) = (~ϕu)
−1(B̄(u)) (2.2.10)

for any u = 0, . . . , t− 1 by induction on u. The equation (2.2.10) holds when u = 0 since
B = B̄(0) by definition. Suppose that u > 0. By the induction hypothesis and Lemma
2.2.14, we have

(µi(u−1) ◦ µi(u−2) ◦ · · · ◦ µi(0))(B)

= (µi(u−1) ◦ (~ϕu−1)
−1)(B̄(u− 1))

= ((~ϕu−1)
−1 ◦ µR0(u))(B̄(u− 1))

= ((~ϕu−1)
−1 ◦ (ϕu−1)

−1)(B̄(u))

= (~ϕu)
−1(B̄(u)),

and (2.2.10) is proved. Applying (2.2.10) for u = t− 1 yields

µi(B) = (~ϕt)
−1(B̄(t)) = ((~ϕt)

−1 ◦ ψt)(B).

This shows that γ is a mutation loop. By (R3) in Definition 2.2.3, we have

{(a, 0) | a ∈ [1, r]} =
t−1⊔
u=0

ψ−u(R0(u))

as a set. This implies that the length of γ is r. The completeness follows from the fact
that the latency of ((a, p), 0) ∈ I × {0} is p.

Now we complete the proof of Theorem 2.2.13 by showing the following lemma:

Lemma 2.2.17. (αγ , Rγ) and (α,R) are equivalent.

Proof. By replacing (α,R) with a suitable equivalent one, we can assume that u < v
implies that a < b for any (a, u) ∈ R0(u) and (b, v) ∈ R0(v) such that 0 ≤ u, v ≤ t − 1.
Then the construction of γ ensures that (αγ , Rγ) = (α,R).

2.2.4 Consequences

For any complete mutation loop γ, we denote by F (γ) the pair (αγ , Rγ) defined in Section
2.2.2. For any pair (α,R) of a T-datum and a consistent subset R for α, we denote G(α,R)
by the complete mutation loop defined in Section 2.2.3.

We define

Mlr = {[γ] | γ is a complete mutation loop of length r},

where [γ] is the equivalence class of γ (see Definition 2.1.2). We also define

Tdr = {α | α is a T-datum of size r}
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and

Td′r = {[(α,R)] | α ∈ Tdr and R ⊆ [1, r]× Z is consistent for α},

where [(α,R)] is the equivalence class of (α,R) (see Definition 2.2.4). We define

F̂r : Mlr → Td′r, Ĝr : Td′r → Mlr

by F̂r([γ]) = [F (γ)] and Ĝr([(α,R)]) = [G(α,R)].

Theorem 2.2.18. F̂r ◦ Ĝr = id and Ĝr ◦ F̂r = id.

Proof. We first show that F̂r and Ĝr are well-defined. Let γ and γ′ be equivalent complete
mutation loops, and ρ be the permutation in Definition 2.1.2. Then we have Aγ′,± =

ρ(Aγ,±) and Rγ′ = ρ(Rγ). Thus F̂r is well-defined.
Let (α,R) and (α′, R′) be equivalent pairs of T-data and consistent subsets for them. Let

ρ ∈ Sr be the permutation in Definition 2.2.4. Let γ = (B, d, i, ν) and γ′ = (B′, d′, i′, ν′)
be the mutation loops given by γ = G(α,R) and γ′ = G(α′, R′), respectively. Then the
bijection fρ,u : R(u) → R′(u) defined by fρ,u(a, u) = (ρ(a), u) satisfies B′ = fρ,0(B),

d′ = fρ,0(d) and ν′ = fρ,0 ◦ ν ◦ f−1
ρ,0 . Moreover, R′

0(u) and fρ,u(R0(u)) coincide as sets.

Thus γ and γ′ are equivalent, and Ĝr is well-defined.
By Lemma 2.2.17, we have F̂r ◦ Ĝr = id. It remains to show that Ĝ ◦ F̂ = id. Let γ be

any complete mutation loop, and I be the index set of γ. Let γ′ = G(αγ , Rγ). Then the
index set I ′ of γ′ is given by I ′ = {(a, u) ∈ Rγ | 0 ≤ u < pa}. Let f : I → I ′ be the map
defined by

f(i) =

{
(π(i, 0), 0) if (i, 0) ∈ Pγ ,

(π(s(i, 0)), λ(i, 0)) if (i, 0) /∈ Pγ ,

where π, s, and λ, Pγ are defined in Section 2.1. It is easy to check that f is a bijection,
and gives the equivalence between γ and γ′.

For any consistent subset R ⊆ [1, r] × Z for a T-datum of size r, we define the set Rin

(the subscript “in” stands for initial) by Rin = {(a, p) ∈ R | 0 ≤ p < pa}.

Theorem 2.2.19. Let α be a T-datum of size r. Suppose that R ⊆ [1, r]×Z is consistent
for α. Let P be a semifield, and F be a filed that is isomorphic to the field of rational
functions over QP in |Rin| variables. Let x = (xa,p)(a,p)∈Rin

be an Rin-tuple of elements
in F forming a free generating set. Let Y = (Ya(u))(a,u)∈R be a solution of the Y-system
associated with (α,R) in P. Then there exists a unique Rin-labeled Y-seed (B, y) in P such
that

(1) there exists a unique injective ZP-algebra homomorphism ι : T◦(α,R, Y ) ↪→
A(B, y, x) such that ι(Ta(p)) = xa,p for any (a, p) ∈ Rin,

(2) ι(Ta(u)) is a cluster variable in A(B, y, x) for any (a, u) ∈ R,
(3) the image of the relation (2.2.5) by ι is an exchange relation in A(B, y, x) for any

(a, u) ∈ R.
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Proof. Let γ = (B, d, i, ν) be the mutation loop given by γ = G(α,R). By Lemma 2.2.17,
we can assume that α = αγ and R = Rγ . We define a family of elements y = (ya,p)(a,p)∈Rin

in P by

ya,p = Ya(p)

∏r
b=1

∏p
q=0

(
1⊕ Yb(p− q)−1

)ň+
ab;q∏r

b=1

∏p
q=0

(
1⊕ Yb(p− q)

)ň−
ab;q

. (2.2.11)

Then we can define a family of seeds (B(u), y(u), x(u))u∈Z by (2.1.11), where
(B(0), y(0), x(0)) = (B, y, x). Note that i(u) = (~ϕu)

−1(R0(u)) for any u ∈ Z by
the commutativity of ψt and ϕ, where we define ~ϕu : R(0) → R(u) by

~ϕu =

{
ϕu−1 ◦ · · · ◦ ϕ0 if u ≥ 0,

(ϕ−1 ◦ · · · ◦ ϕu)
−1 if u < 0.

(2.2.12)

We define Y ′ = (Y ′
a(u))(a,u)∈Rγ

by (2.1.7), where Ya(u) in (2.1.7) is replaced with Y ′
a(u).

Then we have Ya(p) = Y ′
a(p) for any (a, p) ∈ Rin by (2.2.11). Moreover, Y and Y ′ are

solutions of the same Y-system, we have Ya(u) = Y ′
a(u) for any (a, u) ∈ R. We define

T ′
a(u) for any (a, u) ∈ Rγ by (2.1.12), where Ta(u) in (2.1.12) is replaced with T ′

a(u).
Let Aγ(B, y, x) be the ZP-subalgebra of A(B, y, x) generated by (xa,p(u))(a,p)∈Rin,u∈Z.
It is also generated by (T ′

a(u))(a,p)∈Rγ
. We now show that Aγ(B, y, x) is isomorphic to

T◦(α,R, Y ). Let ῑ : T◦(α,R, Y ) → Aγ(B, y, x) be the algebra homomorphism defined
by ῑ(Ta(u)) = T ′

a(u). This is well-defined by Proposition 2.1.5. To construct the in-
verse of ῑ, we define an algebra homomorphism κ : ZP[x±1

a,p](a,p)∈Rin
→ T(α,R, Y ) by

κ(x±1
a,p) = Ta(p)

±1. By the Laurent phenomenon of cluster algebras [FZ02a], Aγ(B, y, x)

is a subalgebra of ZP[x±1
a,p](a,p)∈Rin

. Then we have κ(T ′
a(u)) = Ta(u) since (T ′

a(u))(a,p)∈Rγ

and (Ta(u))(a,p)∈R satisfy the same T-system. Thus we obtain the algebra homomorphism
κ̄ : Aγ(B, y, x) → T◦(α,R, Y ) as the restriction of κ, which is the inverse of ῑ. Therefore,
the existence of a Y-seed satisfying (1)–(3) is proved.

The uniqueness follows from the following facts, which hold for any skew-symmetrizable
cluster algebra: (i) given a cluster as a set, the exchange relations involving its elements
are uniquely determined [CL20, Proposition 6.1], (ii) any two clusters that have |I| − 1
common cluster variables are related by an exchange relation [GSV08, Theorem 5].

Example 2.2.20 (Somos-4 recurrence). Let α, R, and Y be as in Example 2.2.7. Then
the Y-seed given by Theorem 2.2.19 is

(1, 0) (1, 1)

(1, 2)(1, 3)

c1c2 , (2.2.13)

where we represent the Y-seed using a quiver with frozen vertices as in the cluster algebra

literature (see e.g., [FWZ16]). For instance, i c1c2 means yi = c1c
−1
2 . The

mutation loop γ = (B, d, i, ν) = G(α,R) is given by
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• B = B(Q),
• di = 1 for any i ∈ I,
• i = i(0) with i(0) = ((1, 0)),
• ν = ((1, 0) (1, 1) (1, 2) (1, 3)),

where Q is an underlying quiver in (2.2.13), and ν is the cyclic permutation corresponding
to the right π/2 rotation of the quiver. In fact, the quiver mutation µ(1,0) is given by

(1, 0) (1, 1)

(1, 2)(1, 3)

µ(1,0)7−−−→

(1, 0) (1, 1)

(1, 2)(1, 3)

,

and we have µ(1,0)(Q) = ν(Q).

Example 2.2.21 (Bipartite belt). Let α and R be as in Example 2.2.8. The mutation
loop γ = (B, d, i, ν) = G(α,R) is given by

• B = (B(a,p)(b,q))(a,p),(b,q)∈I , where B(a,p)(b,q) = ε(a)nab,
• d = (da,p)(a,p)∈I , where D = diag(d1, . . . , dr) and da,p = da,
• i = i(0) | i(1) with i(0) = {(a, 0) | ε(a) = −1} and i(1) = {(a, 1) | ε(a) = 1},
• ν = id,

where I = {(a, 0) | ε(a) = −1} t {(a, 1) | ε(a) = 1}. If A is the Cartan matrix of type A2,
for instance, the quiver Q(B) is given by

Q(B) = (1, 0) (2, 1) .

If A is a Cartan matrix of finite type, A(B, y, x) is a finite type cluster algebra and the
embedding ι : T◦(α,R, Y ) ↪→ A(B, y, x) in Theorem 2.2.19 is an isomorphism [FZ07,
Proposition 11.1].

2.2.5 Tropical T-system

By Theorem 2.2.19 and the Laurent phenomenon of cluster algebras [FZ02a], we obtain
the following:

Corollary 2.2.22. Let T◦(α,R, Y ) be a T-algebra. Then Ta(u) ∈ T◦(α,R, Y ) can be
written as a Laurent polynomial in (Tc(p))(c,p)∈Rin

with coefficients in ZP, for any (a, u) ∈
R.

Let R = [1, r]× Z. By Corollary 2.2.22, any Ta(u) can be uniquely written as

Ta(u) =
N∏

(c,p)∈Rin
Tc(p)dc,p

, (2.2.14)

where N is a polynomial in (Tc(p))(c,p)∈Rin
with coefficients in ZP which is not divisible

by any Tc(p) ((c, p) ∈ Rin). We denote by t
(c)
a (u) the integer dc,0 in (2.2.14). The family
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of integers (t
(c)
a (u))(a,u)∈[1,r]×Z is uniquely determined by the initial conditions

t(c)a (p) =

{
−1 if (a, p) = (c, 0),

0 if (a, p) 6= (c, 0) and 0 ≤ p < pa,
(2.2.15)

together with the following recurrence relation for each (a, u) ∈ [1, r]× Z:

∑
b,p

n0ba;pt
(c)
b (u+ p) = max

(∑
b,p

n−ba;pt
(c)
b (u+ p),

∑
b,p

n+ba;pt
(c)
b (u+ p)

)
. (2.2.16)

In particular, the integer t
(c)
a (u) is independent of the choice of Y . The family of relations

(2.2.16) is called the tropical T-system associated with α.

We also define a family of integers (ŷ
(c)
a (u))(a,u)∈[1,r]×Z by

ŷ(c)a (u) =
∑
b,p

(
n−ba;pt

(c)
b (u+ p)− n+ba;pt

(c)
b (u+ p)

)
(2.2.17)

=
∑
b,p

(
(n0ba;p − n+ba;p)t

(c)
b (u+ p)− (n0ba;p − n−ba;p)t

(c)
b (u+ p)

)
. (2.2.18)

By the relation (2.2.16), we have

[±ŷ(c)a (u)]+ =
∑
b,p

(n0ba;p − n±ba;p)t
(c)
b (u+ p). (2.2.19)

The following lemma will be used in Section 3.

Lemma 2.2.23. The following equalities hold for any T-datum:

(1) For any a ∈ [1, r], we have

t(c)a (pa) =

{
1 if a = σ(c),

0 otherwise.

(2) For any a ∈ [1, r] and 0 ≤ p ≤ pc, we have

t(c)a (−p) =


−1 if (a, p) = (c, 0),

1 if (a, p) = (σ−1(c), pc),

0 otherwise.

(3) For any a ∈ [1, r] and 0 ≤ p ≤ pc, we have

[±ŷ(c)a (−p)]+ = n±ca;p.
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Proof. (1) is clear from (2.2.15) and (2.2.16). We prove (2) by induction on p. The case
p = 0 follows from (2.2.15). Suppose that p > 0. Then we have

t(c)a (−p) = −t
(c)
σ(a)(−p+ pσ(a)) + max

(∑
b,q

n−ba;qt
(c)
b (−p+ q),

∑
b,q

n+ba;qt
(c)
b (−p+ q)

)
= δσ(a)cδppc

+max(−n+ca;p,−n−ca;p)
= δσ(a)cδppc

,

and (2) is proved. We now prove (3). From (2.2.19), we have

[±ŷ(c)a (−p)]+ =
∑
b,q

(n0ba;q − n±ba;q)t
(c)
b (−p+ q)

= t(c)a (−p) + t
(c)
σ(a)(−p+ pσ(a))− n±ca;pt

(c)
c (0)

= t(c)a (−p) + t
(c)
σ(a)(−p+ pσ(a)) + n±ca;p.

By (1) and (2) in this lemma, we have

t(c)a (−p) =


1 if (a, p) = (σ−1(c), pc),

−1 if (a, p) = (c, 0),

0 otherwise,

and

t
(c)
σ(a)(−p+ pσ(a)) =


1 if (a, p) = (c, 0),

−1 if (a, p) = (σ−1(c), pc),

0 otherwise.

Thus we have t
(c)
a (−p) + t

(c)
σ(a)(−p+ pσ(a)) = 0. This completes the proof of (3).

2.2.6 Indecomposable T-data

If (A+, A−, D) and (A′
+, A

′
−, D

′) are T-data, the direct sum([
A+ O
O A′

+

]
,

[
A− O
O A′

−

]
,

[
D O
O D′

])
is also a T-datum. A T-datum (A+, A−, D) is called decomposable if it can be written as
a nontrivial direct sum after reordering the indices of matrices. A T-datum that is not
decomposable is called indecomposable.

We say that a skew-symmetrizable matrix B is connected if it cannot be written as a
nontrivial direct sum. We also say that a connected skew-symmetrizable matrix B′ =
(B′

ij)i,j∈I′ is a connected component of a skew-symmetrizable matrix B = (Bij)i,j∈I if
I ′ ⊆ I, B′

ij = Bij for any i, j ∈ I ′, and Bij = 0 for any i ∈ I ′ and j ∈ I \ I ′.
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Proposition 2.2.24. Let α be an indecomposable T-datum. Let I ′ be the index set of
a connected component of B, where B is the skew-symmetrizable matrix in the mutation
loop G(α, [1, r]× Z). Then the set

R′ :=
⋃
u∈Z

~ϕu(I
′)

is consistent for α, where ~ϕu is defined by (2.2.12). Moreover, the index set of B′ is I ′,
where B′ is the skew-symmetrizable matrix in the mutation loop G(α,R′).

Proof. Let (B, d, i, ν) = G(α, [1, r] × Z). The bijection ν is given by ν = ϕ−1
0 ◦ ψ. Let I

be the index set of B, that is, I = {(a, p) | a ∈ [1, r], 0 ≤ p < pa}. We recursively define
subsets I ′k ⊆ I for k ∈ Z>0 by I ′0 = I ′ and I ′k = ν|I′

k−1
(I ′k−1). Then B|I′

k
is a connected

component of B since mutations preserve connected components. We now prove (R1) and
(R2) in Definition 2.2.3 for R′. The proof of (R1) and (R2) are almost the same, we only
prove (R1). Suppose that (a, u) ∈ R′. If ň0ab;p 6= 0, then (b, u − p) ∈ R′ by the definition

of R′. Suppose that ň+ab;p or ň−ab;p 6= 0. Then we have (a, u), (b, u − p) ∈ ~ϕu−p(I) and

B̄(b,u−p)(a,u)(u− p) 6= 0, where B̄(u− p) is defined in (2.2.7). This shows that (a, p) and
(b, 0) lie in the same connected component B|I′

p−u
. Thus we have (b, u − p) ∈ R′ since

~ϕu−p(ν
u−p(b, 0)) = (b, u− p) and νu−p(b, 0) ∈ I ′.

We next prove (R3). Let t be the smallest positive integer such that I ′t = I ′. We now
show that

I =

t−1⊔
k=0

I ′k. (2.2.20)

The equality I =
⋃t−1

k=0 I
′
k follows from the fact that α is indecomposable. Suppose that

I ′k1
∩ I ′k2

6= ∅ for some 0 ≤ k1 < k1 < t. Then we have I ′k1
= I ′k2

since B|I′
k1

and B|I′
k2

are connected components of B. But this implies I ′ = I ′k2−k1
, which contradicts the

minimality of t. Thus (2.2.20) is proved. We now have

t−1⋃
k=0

ψk(R′) =
t−1⋃
k=0

⋃
u∈Z

(ψk ◦ ~ϕu)(I
′) =

t−1⋃
k=0

⋃
u∈Z

(~ϕu+k ◦ νk)(I ′)

=
t−1⋃
k=0

⋃
u∈Z

~ϕu+k(I
′
k) =

t−1⋃
k=0

⋃
u∈Z

~ϕu(I
′
k) =

⋃
u∈Z

~ϕu

(t−1⋃
k=0

I ′k

)
=
⋃
u∈Z

~ϕu(I) = [1, r]× Z.

It remains to prove the disjointness. Suppose that there exists a element (a, u) ∈ ψk1(R′)∩
ψk2(R′) for some 0 ≤ k1 < k2 < t. Then we have ((~ϕu−ki

)−1 ◦ψ−ki)(a, u) ∈ I ′ for i = 1, 2.
Thus we have (νki ◦ (~ϕu−ki

)−1 ◦ ψ−ki)(a, u) ∈ I ′ki
for i = 1, 2. On the other hand, we

have νki ◦ (~ϕu−ki)
−1 ◦ ψ−ki = (~ϕu)

−1. This implies that (~ϕu)
−1(a, u) ∈ I ′k1

∩ I ′k2
, which

contradicts (2.2.20).
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Corollary 2.2.25. Let α = (A+, A−, D) be an indecomposable T-datum of size r. Suppose
that there exists a ∈ [1, r] such that both the a-th columns in N+ and N− are zero vectors.
Then both N+ and N− are zero matrices.

Proof. Let (B, d, i, ν) = G(α, [1, r] × Z). By the assumption and (2.2.9), the set I ′ =
{(a, 0)} is the index set of a connected component of B. Then the set R′ defined in
Proposition 2.2.24 is consistent for α. Let (B′, d′, i′, ν′) = G(α,R′). By Proposition
2.2.24, B′ is an I ′ × I ′ matrix. This implies that B′ = 0 since any skew-symmetrizable
matrix of size 1 should be the zero matrix. From (2.1.14) and Lemma 2.2.17, we have
N± = 0.

2.3 Examples of T-data

2.3.1 Period 1 quivers

Theorem 2.3.1. Let p > 0 be a positive integer, and a(z) = 1+n1z+· · ·+np−1z
p−1+zp ∈

Z[z] be a monic palindromic polynomial of degree p, that is, nq = np−q for any 0 < q < p.
Let d be any positive integer. Then the triple α = (A+, A−, [d]) given by A± = N0 −N±
where

N0 =
[
1 + zp

]
, N+ =

[
p−1∑
q=1

[nq]+z
q

]
, N− =

[
p−1∑
q=1

[−nq]+zq
]
,

is a T-datum of size 1. Furthermore, any T-datum of size 1 is of this form.

Proof. The conditions (N1)–(N4) follow immediately from the definition. Since a(z) is a
monic palindromic polynomial of degree p, both z−p/2A+ and z−p/2A− are †-invariant.
This implies that A+A

†
− = A−A

†
+. Thus α is a T-datum.

Conversely, let α = (A+, A−, [d]) = (N0 −N+, N0 −N−, [d]) be any T-datum of size 1.
We now identify 1× 1 matrices with their entries. By the condition (N1), the matrix N0

can be written as N0 = 1+ zp for some positive integer p > 0. Then the matrices N± can

be written as Nε =
∑p−1

q=1 n
ε
qz

q since the degrees of N± are greater that 0 and less than p

by the condition (N3). We also have nεq ∈ Z≥0 by the condition (N2). By the condition

(N4), these numbers can be written as n±q = [±nq]+, where we define nq := n+q − n−q .

We now show by induction on q that n±q = n±p−q for any 0 ≤ q ≤ p, where we set

n±0 = n±p = 0. The case q = 0 is obvious from the definition. Suppose that q > 0. Let mq

be the coefficient of zp−q in the polynomial N0N
†
+ +N+N

†
− +N−N

†
0 , that is,

mq = n+q + n−p−q +

q∑
k=0

n+p−q+kn
−
k . (2.3.1)

On the other hand, mq is also the coefficient of zp−q in the polynomial N0N
†
− +N−N

†
+ +



Chapter 2 Y-systems and T-systems 35

N+N
†
0 by the symplectic relation. Thus we obtain

mq = n−q + n+p−q +

q∑
k=0

n−p−kn
+
q−k. (2.3.2)

The sum parts in (2.3.1) and (2.3.2) coincide by the induction hypothesis, so we obtain
n+q + n−p−q = n−q + n+p−q. Then we conclude from (N4) that n±q = n±p−q.

Let α be a T-datum of size 1 given in Theorem 2.3.1. Let γ = (B, d, i, ν) be the
complete mutation loop given by γ = G(α, {1} × Z). Then the index set I of B is given
by I = {(1, i) ∈ {1} × Z | 0 ≤ i < p}. We identify I with the set {0, 1, . . . , p − 1}. Then
i = i(0) with i(0) = (0), and ν is the cyclic permutation given by ν(i) = i + 1 (mod t).
The exchange matrix B = (Bij)i,j∈I can be computed from the formula (2.2.9) as follows:

Bij = −ni−j + nj−i +

min(i,j)∑
k=0

(
n+i−kn

−
j−k − n−i−kn

+
j−k

)
, (2.3.3)

where n±i := [±ni]+ and ni := 0 unless 0 < i < p.

Remark 2.3.2. The formula (2.3.3) is precisely the general solution of period 1 quivers
given by Fordy and Marsh [FM11, Theorem 6.1]. We can regard Theorem 2.3.1 as another
proof of the classification for period 1 quivers, which was also given in [FM11, Theorem
6.1].

In Example 2.2.7 and 2.2.20 (the Somos-4 recurrence), we give an example of a T-datum
of size 1 and a period 1 quiver.

2.3.2 Commuting Cartan matrices

In this section, we give T-data associated with pairs of Cartan matrices, which are gener-
alization of T-data associated with bipartite belts in Example 2.2.8 and 2.2.21.

Definition 2.3.3. A matrix C = (cab)a,b∈[1,r] ∈ Matr×r(Z) is called a symmetrizable
weak generalized Cartan matrix if

(1) caa ≤ 2 for any a,
(2) cab ≥ 0 for any a, b,
(3) there exists a positive integer diagonal matrix D such that CD is a symmetric

matrix.

The diagonal matrix D is called a (right) symmetrizer of C. Note that a symmetrizable
generalized Cartan matrix is a symmetrizable weak generalized Cartan matrix satisfying
caa = 2 for any a ∈ [1, r].

Proposition 2.3.4. Let A and A′ be symmetrizable weak generalized Cartan matrices
that have a common symmetrizer D. Let N = (nab)a,b∈[1,r] := 2Ir − A and N ′ =
(n′ab)a,b∈[1,r] := 2Ir −A′. Then the triple α = (A+, A−, D) defined by

N0 = (1 + z2)Ir, N+ = zN, N− = zN ′
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is a T-datum if and only if AA′ = A′A and nabn
′
ab = 0 for any a, b ∈ [1, r].

Proof. The conditions (N1)–(N3) are obvious by the definition. We also have N0D = DN0

and D−1N±D ∈ Matr×r(Z[z]) by the definition. The condition (N4) is equivalent to
nabn

′
ab = 0 for any a, b ∈ [1, r]. Thus it is sufficient to show that the symplectic relation is

equivalent to AA′ = A′A. Clearly, AA′ = A′A if and only if NN ′ = N ′N . We now have

A+DA
†
− −A−DA

†
+

=
(
(1 + z2)Ir − zN

)
D
(
(1 + z−2)Ir − z−1N ′T)

−
(
(1 + z2)Ir − zN ′)D((1 + z−2)Ir − z−1NT

)
= (z + z−1)(−ND −DN ′T +DNT +N ′TD) +NDN ′T −N ′DNT

= NDN ′T −N ′DNT

= (NN ′ −N ′N)D,

which completes the proof.

Proposition 2.3.5. Suppose that α given in Proposition 2.3.4 is a T-datum. Suppose
further that there exists a function ε : [1, r] → {1,−1} such that nab or n′ab > 0 implies
ε(a) 6= ε(b) for any a, b ∈ [1, r]. Then the set

Rϵ := {(a, u) ∈ [1, r]× Z | ε(a) = (−1)u−1}

is consistent for α.

Proof. The conditions (R1) and (R2) follow from the assumption on the function ε. The
condition (R3) is satisfied by setting t = 2.

Let γ = (B, d, i, ν) = G(α,Rϵ) be the mutation loop obtained from the data given in
Proposition 2.3.5. The index set of B is given by

I = {(a, 0) | ε(a) = −1} t {(a, 1) | ε(a) = 1},

and we identify it with [1, r] by taking the first components. Then B = (Bab)a,b∈I is given
by

Bab =

{
−ε(a)nab if n′ab = 0,

+ε(a)n′ab if nab = 0.
(2.3.4)

The symmetrizer d is given by d = (da)a∈I , where da is the a-th entry in the common
symmetrizer D. The sequence i is given by i = i(0) | i(1) with i(0) = {a ∈ I | ε(a) = −1}
and i(1) = {a ∈ I | ε(a) = 1}. The permutation ν is the trivial permutation.

Remark 2.3.6. If B is skew-symmetric, the corresponding quiver Q(B) is called a bi-
partite recurrent quiver [GP19a]. Galashin and Pylyavskyy developed the classification
theory of bipartite recurrent quivers [GP19a, GP19b, GP20]. In particular, they gave a
complete classification of bipartite recurrent quivers with which the associated T-system
is periodic.
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Example 2.3.7 (Tensor product construction). Let Ā and Ā′ be symmetrizable weak
generalized Cartan matrices of size r̄ and r̄′, respectively. Suppose that one of them is
non-weak. Let D and D′ be right symmetrizers of Ā and Ā′, respectively. Let A = Ā⊗Ir̄′ ,
A′ = Ir̄⊗Ā′, and D = D̄⊗D̄′. The matrices A and A′ are symmetrizable weak generalized
Cartan matrices that have the common symmetrizer D. Then the triple α = (A+, A−, D)
given in Proposition 2.3.4 is a T-datum of size r̄r̄′ since (Ā⊗Ir̄′)(Ir̄⊗Ā′) = (Ir̄⊗Ā′)(Ā⊗Ir̄′)
and nabδa′b′δabn

′
a′b′ = 0 for any a, b ∈ [1, r̄] and a′, b′ ∈ [1, r̄′].

Suppose further that both Ā and Ā′ are bipartite by functions ε̄ and ε̄, respectively.
Then the function ε : [1, r̄]× [1, r̄′] → {1,−1} defined by ε(a, a′) = ε̄(a)ε̄′(a′) satisfies the
assumption in Proposition 2.3.5. Thus we get the consistent subset Rϵ for α. For example,
let

A =

 2 −1 0
−1 2 −1
0 −1 2

 , A′ =

[
2 −1
−1 2

]

be Cartan matrices of types A3 and A2, respectively. Define ε̄ and ε̄′ by ε̄(1) = ε̄(3) =
ε̄′(2) = 1 and ε̄(2) = ε̄′(1) = −1. Then the bipartite recurrent quiver Q(B) is given by

Q(B) =

(11, 0) (21, 1) (31, 0)

(12, 1) (22, 0) (32, 1)

,

where we denote (a, a′) by aa′.

Example 2.3.8 (Tadpole type). Although Proposition 2.3.5 is for bipartite Cartan ma-
trices, non-bipartite Cartan matrices are sometimes interesting. Let A = 2Ir and A′ =
(2δab − n′ab)a,b∈[1,r] where

n′ab =


1 if |a− b| = 1,

1 if a = b = r,

0 otherwise.

(2.3.5)

The matrix A′ is called the Cartan matrix of the tadpole type Tr. The tadpole type is
non-bipartite since (2.3.5) has a non-zero entry in the diagonal. Let D = Ir. Then α in
Proposition 2.3.4 is a T-datum. For example, α = (A+, A−, Ir) for r = 3 is given by

A+ =

1 + z2 0 0
0 1 + z2 0
0 0 1 + z2

 , A− =

1 + z2 −z 0
−z 1 + z2 −z
0 −z 1− z + z2

 .
Let γ = (B, d, i, ν) be the mutation loop given by γ = G(α, [1, r] × Z). Then the quiver
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mutation Q(B)
µi7−→ µi(Q(B)) = ν(Q(B)) is given as follows (we set r = 3 for simplicity) :

(1, 0) (2, 1) (3, 0)

(3, 1)(2, 0)(1, 1)

µi7−→

(1, 0) (2, 1) (3, 0)

(3, 1)(2, 0)(1, 1)

,

where i = i(0) = {(a, 0) | a ∈ [1, r]}, and ν(a, p) = (a, 1−p) is the permutation that swaps
vertices at the same position in the top and bottom rows. Intuitively, this mutation loop
is explained as follows. If we identify the vertices lying in the same ν-orbits and forget
the orientation of the quiver, we obtain the following graph:

1 2 3 .

This is the Dynkin diagram of type Tr. Therefore, the mutation loop involves the “folding
method” that constructs Tr diagram from A2r diagram. In general, one advantage of
the strategy of constructing mutation loops from T-data is that it can “automatically”
perform such a folding method.

2.3.3 T-systems associated with quantum affinizations

In this section, we assign T-data to generalized Cartan matrices that satisfy a certain
condition, including all finite and affine types. The T-data in this section are different
from that in Section 2.3.2 even though both use Cartan matrices.

Fix a positive integer n. Let C = (cab)1≤a,b≤n be a symmetrizable generalized Cartan
matrix. We assume that C is indecomposable. Let diag(c1, . . . , cn) be a left symmetrizer
of C. We define integers ta (1 ≤ a ≤ n) by

ta = c−1
a lcm(c1, . . . , cn).

We also define integers tab (1 ≤ a, b ≤ n) by

tab = c−1
a lcm(ca, cb).

These integers do not depend on the choice of a symmetrizer. Let [k]z ∈ Z[z±1] be the
z-integer defined by

[k]z =
zk − z−k

z − z−1

= zk−1 + zk−3 + · · ·+ z−(k−3) + z−(k−1).

We denote [k]zca by [k]za .
Let ` be an integer with ` ≥ 2. Let H be the index set defined by

H = {(a,m) | 1 ≤ a ≤ n, 1 ≤ m ≤ ta`− 1}.
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We often denote an element (a,m) ∈ H by am. For any (a,m), (b, k) ∈ H, we define
polynomials ñ0am,bk, ñ

+
am,bk, ñ

−
am,bk ∈ Z[z±1] by

ñ0am,bk = [2]zaδab,

ñ+am,bk = δab(δm,k+1 + δm,k−1),

ñ−am,bk =

{
t−1
ab |cab|[tba − |p− k|]zb if a ∼ b, p ∈ Z, and |p− k| < tba,

0 otherwise,

where we write a ∼ b if cab < 0, and p = mt−1
ab tba. We define two H × H-matrices Ã+

and Ã− by

Ã± =
(
ñ0am,bk − ñ±am,bk

)
am,bk∈H

.

To illustrate the pair of matrices (Ã+, Ã−), it is useful to consider the graph Γ(Ã+, Ã−)
defined as follows:

• the set of vertices of Γ(Ã+, Ã−) is H,
• for any pair of vertices (a,m), (b, k) ∈ H, we draw a blue edge equipped with the
pair of polynomials (f+, g+) := (ñ+am,bk, ñ

+
bk,am), and a red edge equipped with the

pair of polynomials (f−, g−) := (ñ−am,bk, ñ
−
bk,am):

f+ g+

f− g−

(a,m) (b, k)

.

For a red edge

f− g−
(a,m) (b, k)

,

we use the following abbreviations:

if (f−, g−) = (0, 0),

if (f−, g−) = (1, 1),

> if (f−, g−) = (1, [2]za),

> if (f−, g−) = (1, [3]za),

> if (f−, g−) = (0, 1),

> if (f−, g−) = (0, [2]za),

> if (f−, g−) = (0, [3]za).

We may use the same abbreviations for blue edges, but these are not needed here. When
we use these abbreviations, we keep in mind the symmetrizer.
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Example 2.3.9. Consider a Cartan matrix of type F4:

C =


2 −1 0 0

−1 2 −1 0
0 −2 2 −1
0 0 −1 2

 ,
and choose a symmetrizer as diag(2, 2, 1, 1). When ` = 2, the index set H is given by

H = {(1, 1), (2, 1), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3)},

and the matrices Ã+ and Ã− are given by

Ã+ =



[2]z2 0 0 0 0 0 0 0
0 [2]z2 0 0 0 0 0 0
0 0 [2]z −1 0 0 0 0
0 0 −1 [2]z −1 0 0 0
0 0 0 −1 [2]z 0 0 0
0 0 0 0 0 [2]z −1 0
0 0 0 0 0 −1 [2]z −1
0 0 0 0 0 0 −1 [2]z


,

Ã− =



[2]z2 −1 0 0 0 0 0 0
−1 [2]z2 −1 −[2]z −1 0 0 0
0 0 [2]z 0 0 −1 0 0
0 −1 0 [2]z 0 0 −1 0
0 0 0 0 [2]z 0 0 −1
0 0 −1 0 0 [2]z 0 0
0 0 0 −1 0 0 [2]z 0
0 0 0 0 −1 0 0 [2]z


.

The diagram Γ(Ã+, Ã−) is given by

(1, 1) (2, 1)

(3, 1)

(3, 2)

(3, 3)

(4, 1)

(4, 2)

(4, 3)

<
<
<

.

More complicated examples are given in Figure 2.3. The left diagram is of

C =

 2 −1 0
−1 2 −1
0 −2 2
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<
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<

>
>
>
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>
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Fig. 2.3 Examples of the diagram Γ(Ã+, Ã−).

(the Cartan matrix of type B3) and ` = 5, and the right diagram is of

C =


2 −1 0 0

−3 2 −2 −2
0 −1 2 −1
0 −1 −1 2


and ` = 2.

Proposition 2.3.10. The red part of the diagram Γ(Ã+, Ã−) contains the Dynkin diagram
of the transpose of C. More precisely, we have

(Ã−|z=1)am,bk = cba

if tbam = tabk.

Proof. Suppose that (a,m), (b, k) ∈ H satisfy tbam = tabk. Note that such pairs exist for
any a, b since m := tab ≤ ta ≤ ta`− 1 and k := tba ≤ tb ≤ tb`− 1 satisfy the condition. If
a = b, we have

(Ã−|z=1)am,bk = (ñ0am,am)|z=1 = 2,
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and this is equal to caa. If a 6= b, we have

(Ã−|z=1)am,bk = −(ñ−am,bk)|z=1 = t−1
ab cabtba = cacabc

−1
b = cba.

Lemma 2.3.11. The matrix Ã+Ã
T
− is symmetric.

Proof. The matrix Ã+Ã
T
− is symmetric if and only if∑

(c,l)∈H

(ñ0am,clñ
+
bk,cl + ñ+am,clñ

−
bk,cl + ñ−am,clñ

0
bk,cl

− ñ0am,clñ
−
bk,cl − ñ−am,clñ

+
bk,cl − ñ+am,clñ

0
bk,cl) = 0

(2.3.6)

for any (a,m), (b, k) ∈ H. Let X be the left-hand side in (2.3.6). Then X = 0 is trivial
except for the following cases:

(i) a ∼ b and tbam = tabk,
(ii) a ∼ b, p = mt−1

ab tba ∈ Z, and 0 < |p− k| < tba,

(ii’) a ∼ b, p′ = kt−1
ba tab ∈ Z, and 0 < |p′ −m| < tab,

(iii) a ∼ b, p = mt−1
ab tba ∈ Z, and |p− k| = tba,

(iii’) a ∼ b, p′ = kt−1
ba tab ∈ Z, and |p′ −m| = tab.

Moreover, the cases (ii’) and (iii’) reduce to the cases (ii) and (iii), respectively, since the
left-hand side in (2.3.6) is skew-symmetric under am↔ bk. For the case (i), we have

X = 2t−1
ba |cba|[tab − 1]za + t−1

ab |cab|[tba]zb · [2]zb
− [2]za · t−1

ba |cba|[tab]za − 2t−1
ab |cab|[tba − 1]zb

= t−1
ab |cab|([tba + 1]zb − [tba − 1]zb)− t−1

ba |cba|([tab + 1]za − [tab − 1]za)

= t−1
ab |cab|(z

tbacb + z−tbacb)− t−1
ba |cba|(ztabca + z−tabca)

= 0.

Here, we use [n]z · [2]z = [n + 1]z + [n − 1]z to derive the second equality. For the case
(ii), we have

X = t−1
ab |cab|[tba − |p− k|]zb · [2]zb
− t−1

ab |cab|([tba − |p− k| − 1]zb + [tba − |p− k|+ 1]zb)

= 0.

For the case (iii), we have

X = t−1
ab |cab|[1]zb − t−1

ba |cba|[1]za = 0.
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Theorem 2.3.12. Let N0, N+, N− ∈ MatH×H(Z[z]) be the matrices defined by

Nε =
(
zca ñεam,bk

)
am,bk∈H

(ε ∈ {0,+,−}).

Then the triple (N0, N+, N−) and the pair (A+, A−) = (N0 −N+, N0 −N−) satisfy

(1) the conditions (N1), (N2), and (N4),

(2) the symplectic relation A+A
†
− = A−A

†
+,

(3) and the condition (N3) if and only if

cab | cba or cba | cab for any 1 ≤ a, b ≤ n. (2.3.7)

Consequently, for any Cartan matrix C satisfies the condition (2.3.7) and any integer `
greater than or equal to 2, the triple (A+, A−, IH) is a T-datum of size |H|.

Proof. The conditions (N1), (N2), and (N4) are obvious from the definition. The sym-
plectic relation follows from Lemma 2.3.11 and the fact that ñεam,bk are invariant under

z 7→ z−1. The condition (N3) is equivalent to (tba− 1)cb < ca for any a, b such that a ∼ b,
and this is equivalent to lcm(ca, cb) < ca + cb for any a, b such that a ∼ b. This happens
if and only if ca | cb or cb | ca for any a, b such that a ∼ b, and this is equivalent to the
condition (2.3.7).

Remark 2.3.13. If the Cartan matrix in Theorem 2.3.12 and its symmetrizer satisfy the
condition

cab < −1 ⇒ ca = −cba = 1,

which implies (2.3.7), the mutation loop corresponding to the T-datum (A+, A−, IH) is
explicitly constructed in [Nak11c]. The T-system associated with this T-datum is a cer-
tain truncation a T-system associated with Kirillov-Reshetikhin modules of the quantum
affinization of a quantum Kac-Moody algebra [Her07, KNS09] (a truncation and a quan-
tum Kac-Moody algebra are associated with ` and C, respectively).
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Chapter 3

Periodic Y/T-systems

3.1 Finite type T-data
Definition 3.1.1. We say that a T-datum α is of finite type if the set {Ta(u) ∈
T◦(α,R, Y ) | (a, u) ∈ R} is a finite set.

Definition 3.1.1 does not depend on R since the set being considered is a finite set for
some R if and only if it is a finite set for [1, r] × Z by (R3). We will see that this is also
independent of the choice of Y .

Definition 3.1.2. Let α be a T-datum and R be a consistent subset for α.

(1) We define Yprin(α,R) to be the solution of the Y-system associated with (α,R) in
Trop(ua,p)(a,p)∈Rin

such that ua,p = ya,p for any (a, p) ∈ Rin, where ya,p is defined
by (2.2.11). By Theorem 2.2.19, the T-algebra T◦(α,R, Y ) is embedded into the
cluster algebra with principal coefficients (see [FZ07] for the definition of cluster
algebras with principal coefficients).

(2) We define Yuniv(α,R) to be the solution of the Y-system associated with (α,R) in
Qsf(ua,p)(a,p)∈Rin

such that ua,p = ya,p for any (a, p) ∈ Rin, where ya,p is defined
by (2.2.11).

Definition 3.1.3. Let α be a T-datum and R be a consistent subset for α. Let Ω be a
integer with t | Ω, where t is the integer in (R3) in Definition 2.2.3.

(1) We say that a solution (Ya(u))(a,u)∈R of the Y-system associated with (α,R) is
periodic with period Ω if Ya(u) = Ya(u+Ω) for any (a, u) ∈ R.

(2) We say that the T-system associated with (α,R, Y ) is periodic with period Ω if Y
is periodic with period Ω and Ta(u) = Ta(u+Ω) in T◦(α,R, Y ) for any (a, u) ∈ R.

Definition 3.1.3 also does not depend on R. By the synchronicity phenomenon in cluster
algebras [Nak19], we have the following assertion:

Theorem 3.1.4. Let α be a T-datum and R be a consistent subset for α. Let Ω be a
integer with t | Ω, where t is the integer in (R3) in Definition 2.2.3. Then the following
conditions are equivalent:

(1) The T-system associated with (α,R, Y ) is periodic with period Ω for some Y .
(2) The T-system associated with (α,R, Y ) is periodic with period Ω for any Y .
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(3) Yprin(α,R) is periodic with period Ω.
(4) Yuniv(α,R) is periodic with period Ω.

Proof. This follows from Theorem 2.2.19 together with the synchronicity phenomenon in
cluster algebras [Nak19, Theorem 5.2 and 5.5].

It is easy to see that α is of finite type (for some Y ) if and only if the condition (1) in
Theorem 3.1.4 holds for some Ω > 0. Therefore, Theorem 3.1.4 implies that Definition
3.1.1 does not depend on Y .

3.1.1 Simultaneous positivity of finite type T-data

For any matrix A ∈ Matr×r(Z[z±1]), we define Å ∈ Matr×r(Z) by Å = A|z=1. For any
vector u, v ∈ Rr, we write u > v and u ≥ v if all components of the vector u − v are
positive and non-negative, respectively. The following is the main theorem in this section,
which gives a effective method to determine that a given T-datum is not of finite type.

Theorem 3.1.5. Let α = (A+, A−, D) be a T-datum. If α is of finite type, then there

exists a vector v > 0 such that ÅT
+v > 0 and ÅT

−v > 0.

Proof. Without loss of generality we can assume that α is indecomposable. It is sufficient
to find a vector v ≥ 0 such that ÅT

+v > 0 and ÅT
−v > 0 since such a vector plus a sufficiently

small positive vector is a desired vector. Let c ∈ [1, r]. Let t(c) = (t
(c)
a (u))(a,u)∈[1,r]×Z be

the family of integers defined in Section 2.2.5, that is, t
(c)
a (u) is the minus of the lowest

power of Tc(0) in Ta(u), where Ta(u) is written as a Laurent polynomial in (Tc(p))(c,p)∈Rin
.

We also define the family of integers t̃(c) = (̃t
(c)
a (u))(a,u)∈[1,r]×Z, where t̃

(c)
a (u) is the highest

power of Tc(0) in Ta(u). By the definitions, we have t
(c)
a (u) + t̃

(c)
a (u) ≥ 0 for any (a, u) ∈

[1, r]×Z. By Proposition 2.6 in [RS18], the family of integers t̃(c) is uniquely determined
by the initial conditions

t̃(c)a (p) =

{
1 if (a, p) = (c, 0),

0 if (a, p) 6= (c, 0) and 0 ≤ p < pa,
(3.1.1)

together with the following recurrence relation for each (a, u) ∈ [1, r]× Z:

∑
b,p

n0ba;p t̃
(c)
b (u+ p) = max

(∑
b,p

n−ba;p t̃
(c)
b (u+ p),

∑
b,p

n+ba;p t̃
(c)
b (u+ p)

)
. (3.1.2)

The family of integers t(c) and t̃(c) satisfy the same recurrence relation, but have the
different initial conditions.

Let v
(c)
a and ṽ

(c)
a be the integers defined by

v(c)a =

Ω−1∑
u=0

t(c)a (u), ṽ(c)a =

Ω−1∑
u=0

t̃(c)a (u),
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where Ω is a period of the T-system. By the periodicity of the T-system, we have

v(c)a =
Ω−1∑
u=0

t(c)a (u+ p), ṽ(c)a =
Ω−1∑
u=0

t̃(c)a (u+ p)

for any p ∈ Z. By summing up (2.2.16) with respect to the period, we have

∑
b

n̊0bav
(c)
b =

Ω−1∑
u=0

max

(∑
b,p

n−ba;pt
(c)
b (u+ p),

∑
ba;p

n+ba;pt
(c)
b (u+ p)

)
(3.1.3)

≥ max

(∑
b

n̊−bav
(c)
b ,
∑
b

n̊+bav
(c)
b

)
, (3.1.4)

where n̊εba =
∑

p nba,p. This implies that ÅT
+v

(c) ≥ 0 and ÅT
−v

(c) ≥ 0. Similarly, we have

ÅT
+ṽ

(c) ≥ 0 and ÅT
−ṽ

(c) ≥ 0 by summing up (3.1.2) with respect to the period. Let v and
ṽ be the vectors defined by

v =

r∑
c=1


v
(c)
1
...

v
(c)
r

 , ṽ =

r∑
c=1


ṽ
(c)
1
...

ṽ
(c)
r

 .
We then define a vector v′ by v′ = v + ṽ. We have v′ ≥ 0 since t

(c)
a (u) + t̃

(c)
a (u) ≥ 0. We

also have ÅT
+v

′ ≥ 0 and ÅT
−v

′ ≥ 0. Therefore, if we prove that ÅT
+v > 0 and ÅT

−v > 0,
the assertion of the theorem follows.

From (2.2.17), (2.2.19), and (3.1.4), the a-th component of ÅT
±v is positive if and only if

there exists (c, u) ∈ [1, r]×Z such that [±y
(c)
a (u)]+ 6= 0. Therefore the a-th component of

ÅT
±v is positive if the a-th column of N± is non-zero by (3) in Lemma 2.2.23. It remains

to prove that the a-th component of ÅT
±v is also positive when the a-th column of N±

is zero. If both the a-th columns of N+ and N− are zero, the assertion of the theorem
follows from Corollary 2.2.25. Thus we can assume that either the a-th column of N+

or N− is non-zero. Without loss of generality we assume that the a-th column of N+ is
non-zero and the a-th column of N− is zero. Let n+ca;pz

p be a term in the a-th column of
N+ with the minimal degree among the terms in this column. Now we have

[−ŷ(σ(c))a (−pσ(c) − p)]+ =
∑
b,q

(n0ba;q − n−ba;q)t
(σ(c))
b (−pσ(c) − p+ q)

=
∑
b,q

n0ba;qt
(σ(c))
b (−pσ(c) − p+ q)

= max

(∑
b,q

n+ba;qt
(σ(c))
b (−pσ(c) − p+ q), 0

)
= max

(
n+ca;pt

(σ(c))
c (−pσ(c)), 0

)
= max(n+ca;p, 0)

= n+ca;p,
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and this implies that the a-th component of ÅT
−v is positive.

Example 3.1.6.

(1) A T-datum of size 1 (Theorem 2.3.1) is of finite type if and only if (A+, A−) is one
of the following three pairs of matrices for some p > 0:

A+ =
[
1 + z2p

]
, A− =

[
1 + z2p

]
,

A+ =
[
1− zp + z2p

]
, A− =

[
1 + z2p

]
,

A+ =
[
1 + z2p

]
, A− =

[
1− zp + z2p

]
.

The if part is proved by direct calculations, and the only if part follows from The-
orem 3.1.5.

(2) A T-datum associated with a bipartite recurrent quiver, which is a special case of
a T-datum in Proposition 2.3.4, is of finite type if and only if both A and A′ are
direct sums of ADE Cartan matrices [GP19a]. In fact, Theorem 3.1.5 generalizes
Proposition 7.1 in [GP19a] to arbitrary T-data.

(3) A T-datum in Example 2.3.7 is of finite type if and only if both Ā and Ā′ are of
finite type Cartan matrices, except that one of them can be of tadpole type. The
if part is proved in [Kel13], and the only if part follows from Theorem 3.1.5.

(4) A T-datum in Theorem 2.3.12 is of finite type if and only if C is of finite type
Cartan matrix. The if part is proved in [IIK+13a, IIK+13b], and the only if part
follows from Proposition 2.3.10 and Theorem 3.1.5.

3.2 Special values of the dilogarithm function

Definition 3.2.1. Let α = (A+, A−, D) be a T-datum. Let P = diag(z−pa/2)a∈[1,r],
where pa is the integer in (N1). We say that α is Cartan-like if both the matrices PA+

and PA− are invariant under z 7→ z−1.

This terminology comes from the fact that T-data in Section 2.3.2 satisfy this property.
All examples in Section 2.3 are also Cartan-like. Note that Å± are not Cartan matrices
in general since they may not be sign-symmetric (see examples in Table 3.1 and 3.2). The
matrix N0 in the Cartan-like T-datum should be a diagonal matrix. This property is
useful due to the following fact on real square matrices whose off-diagonal entries are non-
positive. As a result, we assign a positive definite symmetric matrix to any Cartan-like
T-datum of finite type (Proposition 3.2.3).

Lemma 3.2.2 ([FP62, Theorem 4.3]). Let A be a real square matrix whose off-diagonal
entries are all non-positive. Then the following conditions are equivalent:

(1) there exists v > 0 such that Av > 0,
(2) all real eigenvalues of A are positive.

Proposition 3.2.3. Let α = (A+, A−, D) is a Cartan-like T-datum of finite type. Then
the following assertions hold:

(1) Å+ and Å− are invertible.
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(2) Let K = (κab)a,b∈[1,r] be the matrix defined by K = Å−1
+ Å−. Then KD is a positive

definite symmetric matrix.
(3) Let K∨ = (κ̌ab)a,b∈[1,r] be the matrix defined by K∨ = D−1KD. Then K∨D∨ is a

positive definite symmetric matrix.

Proof. By Theorem 3.1.5 and Lemma 3.2.2, all the real eigenvalues of Å± are positive.

This implies (1). Since K∨ = (Å∨
+)

−1Å∨
−, the assertion (3) follows from the assertion (2)

for α∨. We now prove (2). We first see that K is symmetric due to the symplectic relation.
Suppose that there exists an eigenvector v of K with a non-positive eigenvalue. Let us
denote by −λ this eigenvalue. Then we have (Å−+λÅ+)v = 0. Thus 0 is an eigenvalue of

Å− + λÅ+. Since λ ≥ 0, all off-diagonal entries in Å− + λÅ+ are non-positive. Moreover,
this matrix satisfies the condition (1) in Lemma 3.2.2 by Theorem 3.1.5. Thus its real
eigenvalues are positive by Lemma 3.2.2, a contradiction.

The function

Li2(z) :=
∞∑

n=1

zn

n2
(|z| < 1)

is called the dilogarithm function. The Rogers dilogarithm function is a function on the
interval (0, 1) defined as follows:

L(x) = Li2(x) +
1

2
log(x) log(1− x).

We can define L(0) = 0 and L(1) = π2/6 by continuity.
For any T-datum α = (A+, A−, D), we denote by da and d∨a the a-th entries in D and

D∨, respectively.

Theorem 3.2.4. Let α = (A+, A−, D) be a Cartan-like T-datum of finite type. Let
K∨ = (κ̌ab)a,b∈[1,r] be the matrix defined in Proposition 3.2.3.

(1) The system of equations

fa =
r∏

b=1

(1− fb)
κ̌ab (a ∈ [1, r]) (3.2.1)

has a unique real solution such that 0 < fa < 1 for any a ∈ [1, r].
(2) Let (fa)a∈[1,r] be the unique solution in (1). Define the real number cα by

cα :=
6

π2

r∑
a=1

daL(fa).

Then we have cα ∈ Q.

Proof. We define a function Fα(x) : [0,∞)r → R by

Fα(x) =
1

2
xTK∨D∨x+

r∑
a=1

(d∨a )
−1Li2(exp(−d∨axa)).
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A+ A− K cα[
1 + z2 −z
−z 1 + z2

] [
1 + z2 0

0 1 + z2

] [
4/3 2/3
2/3 4/3

]
4/5[

1 + z2 −z
−z 1 + z2

] [
1− z + z2 0

0 1− z + z2

] [
2/3 1/3
1/3 2/3

]
1[

1 + z2 −z
−z − z5 1 + z6

] [
1 + z2 0
−z3 1 + z6

] [
3/2 1
1 2

]
5/7[

1 + z2 −z
−z − z2 1 + z3

] [
1− z + z2 0

0 1 + z3

] [
1 1
1 2

]
3/4[

1 + z2 −z
−z − z5 − z9 1 + z10

] [
1 + z2 0

−z3 − z7 1 + z10

] [
2 2
2 4

]
4/7

Table 3.1 Examples of Cartan-like T-data of finite type of size 2, where D = I2 in
these examples.

By setting fa = 1−exp(−d∨axa), we see that the statement (1) is equivalent to saying that
the function Fα(x) has a unique critical point in (0,∞)r. This follows from the fact that
K∨D∨ is a positive definite symmetric matrix, as in the proof of Lemma 2.1 in [VZ11].

We now prove (2). From the result in [Nak11b, Section 6], the value

6

π2

∑
(a,u)∈[1,r]×Z

0≤u<Ω

daL

(
Ya(u)

1⊕ Ya(u)

)
(3.2.2)

is an integer for any solution Y = (Ya(u))(a,u)∈[1,r]×Z of the Y-system associated with
(α, [1, r]×Z) in the semifield R>0, where Ω > 0 is a period of Yuniv(α, [1, r]×Z). Moreover,
this value is independent of the choice of Y . In fact, Nakanishi [Nak11b] proved that these
facts follow from the sign coherence property of cluster algebras, which was proved by
Gross, Hacking, Keel, and Kontsevich [GHKK18] for skew-symmetrizable cluster algebras.

It is easy to see that the system of equations (3.2.1) is equivalent to

r∏
b=1

f
∑

p∈Z(ň
0
ab;p−ň+

ab;p)

b =
r∏

b=1

(1− fb)
∑

p∈Z(ň
0
ab;p−ň−

ab;p) (a ∈ [1, r]). (3.2.3)

Thus the family Y = (Ya(u))(a,u)∈[1,r]×Z defined by Ya(u) = fa/(1 − fa) is a solution of
the Y-system associated with (α, [1, r]×Z) in R>0. Since this is a constant solution with
respect to u, the integer (3.2.2) is equal to Ωcα. Thus cα is a rational number.

Example 3.2.5. We give some examples of Cartan-like T-data of finite type of size 2 and
size 3 in Table 3.1 and 3.2, respectively, where the matrix D in these examples are the
identity matrices. We also show the positive definite symmetric matrix K and the rational
number cα associated with these T-data. The rational number cα can be computed by
using Theorem 6.8 in [Nak11b].
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A+ A− K cα1 + z2 −z 0
−z 1 + z2 −z
0 −z 1 + z2

 1 + z2 0 0
0 1 + z2 0
0 0 1 + z2

 3/2 1 1/2
1 2 1

1/2 1 3/2

 1

1 + z2 −z 0
−z 1 + z2 −z
0 −z 1 + z2

 1− z + z2 0 0
0 1− z + z2 0
0 0 1− z + z2

 3/4 1/2 1/4
1/2 1 1/2
1/4 1/2 3/4

 9/7

1 + z2 −z 0
−z 1 + z2 −z
0 −z − z2 1 + z3

 1− z + z2 0 0
0 1− z + z2 0
0 0 1 + z3

 1 1 1
1 2 2
1 2 3

 9/10

 1 + z2 0 −z
−z3 1 + z6 0

−z − z7 −z2 − z6 1 + z8

  1 + z2 −z 0
−z − z5 1 + z6 0

0 0 1 + z8

 2 0 2
0 1 1
2 1 4

 1

1 + z2 −z 0
−z 1 + z2 −z
0 −z 1− z + z2

 1 + z2 0 0
0 1 + z2 0
0 0 1 + z2

 2 2 2
2 4 4
2 4 6

 2/3

 1 + z2 −z 0
−z − z5 1 + z6 −z3

0 −z3 1 + z6

 1 + z2 0 0
−z3 1 + z6 0
0 0 1 + z6

 2 2 1
2 4 2
1 2 2

 4/5

1− z + z2 −z 0
−z 1 + z2 0
0 0 1 + z5

  1 + z2 0 0
0 1 + z2 −z

−z2 − z3 −z − z4 1 + z5

  4 2 −1
2 2 −1
−1 −1 1

 3/2

Table 3.2 Examples of Cartan-like T-data of finite type of size 3, where D = I3 in
these examples.

3.3 Partition q-series
Let α = (A+, A−, D) be a Cartan-like T-datum of finite type of size r. We define two sets
Hα and H ′

α by

Hα =
{
(m, l) ∈ Zr ×Qr | Å−m = Å+l

}
,

H ′
α =

{(
(Å∨

+)
Tn, (Å∨

−)
Tn
)
| n ∈ Zr

}
.

These are free abelian groups of rank r, and the symplectic relation implies that H ′
α is a

subgroup of Hα. Let Sα be the quotient group of Hα by H ′
α: Sα = Hα/H

′
α. This is a

finite abelian group that is isomorphic to Zr/(the rows space of Å∨
+). In particular, the

order of Sα is det Å+. For any σ ∈ Sα, we denote by σ≥0 the set {(m, l) ∈ σ | m ≥ 0}.

Definition 3.3.1. Let α = (A+, A−, D) be a Cartan-like T-datum of finite type. Let
σ ∈ Sα. We define the partition q-series of α at σ by

Zα,σ(q) :=
∑

(m,l)∈σ≥0

q
1
2 ⟨m, l⟩∏r

a=1(q
d∨
a )ma

,

where 〈m, l〉 := mTD∨l and (q)n =
∏n

i=1(1 − qi) is the q-Pochhammer symbol. We also



Chapter 3 Periodic Y/T-systems 51

define the total partition q-series of α by

Zα,tot(q) :=
∑
σ∈Sα

Zα,σ(q) =
∑

m∈(Z≥0)r

q
1
2m

TK∨D∨m∏r
a=1(q

d∨
a )ma

.

Proposition 3.3.2.

(1) The partition q-series Zα,σ(q) with q = e2πiτ converges to a holomorphic function
on the upper half plane H = {τ ∈ C | Im τ > 0}, where we set qκ = e2πiτκ for any
κ ∈ Q.

(2) We have

lim
ε↘0

ε logZα,tot(e
−ε) =

π2

6δ
cα,

where δ = lcm(d1, . . . , dr) gcd(d1, . . . , dr) and cα is the rational number in Theorem
3.2.4.

Proof. (1) follows from the fact thatK∨D∨ is a positive definite symmetric matrix (Propo-
sition 3.2.3). (2) follows from the asymptotic analysis in [VZ11].

Let Γ ⊆ SL(2,Z) be a congruence subgroup. We say that a holomorphic function f(τ)
on the upper half plane is a modular function with respect to Γ if f(τ) = f(aτ+b

cτ+d ) for any

τ ∈ H and
[
a b
c d

]
∈ Γ, and f(τ) is meromorphic at each cusp of Γ.

Conjecture 3.3.3. Let α = (A+, A−, D) be a Cartan-like T-datum of finite type. Then
there exists a congruence subgroup Γ ⊆ SL(2,Z) such that q−cα/24Zα,σ(q) with q = e2πiτ

is a modular function with respect to Γ for any σ ∈ Sα, where cα is the rational number
in Theorem 3.2.4.

Remark 3.3.4. For any solution (fa)a∈[1,r] ∈ Qr
of (3.2.1), we can define the element

r∑
a=1

da[fa] ∈ B(F ), (3.3.1)

where F is a number field containing the solution, and B(F ) is the Bloch group of F . By
the result in [Nak11b, Section 6], we see that the element (3.3.1) is a torsion (see [Lee13]).
Conjecture 3.3.3 can be regarded as a version of Nahm’s Conjecture [Nah07, Zag07], which
relates torsions in Bloch groups and the modularity of q-hypergeometric series.

Theorem 3.3.5. Conjecture 3.3.3 holds for r = 1.

Proof. From (1) in Example 3.1.6, it is sufficient to prove the following three cases:

α1 =
(
1 + z2p, 1 + z2p, d

)
,

α2 =
(
1− zp + z2p, 1 + z2p, d

)
,

α3 =
(
1 + z2p, 1− zp + z2p, d

)
.
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For these three cases, we have Sα1
∼= Z/2Z, Sα2

∼= 0, and Sα3
∼= Z/2Z. We also have

Lα1 = d/2, Lα2 = 2d/5, and Lα3 = 3d/5.
We first consider α2 because its proof is the simplest and follows from a well-known

discussion (e.g., see [Zag07, Chapter II, Section 3]). In this case, the partition q-series is
given by

Zα2,0(q) =
∑

n∈Z≥0

qdn
2

(qd)n
.

Using the Rogers-Ramanujan identity

∞∑
n=0

qn
2

(q)n
=

∏
n>0

n≡±1 (mod 5)

1

1− qn
,

together with the Jacobi triple product identity, we have

q−d/60Zγ(q) =
1

2η(qd)

∑
n∈Z

a(n)qdn
2/40, (3.3.2)

where η(q) = q1/24
∏∞

n=1(1− qn) is the Dedekind eta, and

a(n) =


1 if n ≡ ±1 (mod 20),

−1 if n ≡ ±9 (mod 20),

0 otherwise.

Since the right-hand side in (3.3.2) is the ratio of modular forms of weight 1/2, it is a
modular function. Thus we obtain the assertion for α2.

We now prove the assertion for α1 and α3. The partition q-series in these cases are
given by

Zα3,0(q) =
∑

n∈Z≥0

qdn
2

(qd)2n
, Zα3,1(q) =

∑
n∈Z≥0

qd(n
2+n+ 1

4 )

(qd)2n+1
,

Zα1,0(q) =
∑

n∈Z≥0

q2dn
2

(qd)2n
, Zα1,1(q) =

∑
n∈Z≥0

qd(2n
2+2n+ 1

2 )

(qd)2n+1
.

To prove the assertion for α1 and α3, we use the following Rogers ‒ Ramanujan type
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identities (see [MLSZ08, S. 98, S. 94, S. 83, and S. 86] and references therein):

∞∑
n=0

qn
2

(q)2n
=

∏
n>0

n≡±1,±3,±4,±5,±7,±9 (mod 20)

1

1− qn
, (3.3.3)

∞∑
n=0

qn
2+n

(q)2n+1
=

∏
n>0

n≡±1,±2,±5,±6,±8,±9 (mod 20)

1

1− qn
, (3.3.4)

∞∑
n=0

q2n
2

(q)2n
=

∏
n>0

n≡±2,±3,±4,±5 (mod 16)

1

1− qn
, (3.3.5)

∞∑
n=0

q2n
2+2n

(q)2n+1
=

∏
n>0

n≡±1,±4,±6,±7 (mod 16)

1

1− qn
. (3.3.6)

Using (3.3.3) and (3.3.4) together with the quintuple product identity, we have

q−d/40Zα3,σ(q) =
1

2η(qd)

∑
n∈Z

a3,σ(n)q
dn2/60,

where

a3,0(n) =


1 if n ≡ ±1 (mod 30),

−1 if n ≡ ±11 (mod 30),

0 otherwise,

a3,1(n) =


1 if n ≡ ±4 (mod 30),

−1 if n ≡ ±14 (mod 30),

0 otherwise.

Thus we obtain the assertion for α3. Similarly, using (3.3.5) and (3.3.6) together with the
quintuple product identity, we have

q−d/48Zα1,σ(q) =
1

2η(qd)

∑
n∈Z

a1,σ(n)q
dn2/48,

where

a1,0(n) =


1 if n ≡ ±1 (mod 24),

−1 if n ≡ ±7 (mod 24),

0 otherwise,

a1,1(n) =


1 if n ≡ ±5 (mod 24),

−1 if n ≡ ±11 (mod 24),

0 otherwise.

Thus we obtain the assertion for α1.
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We give some examples supporting Conjecture 3.3.3 for r ≥ 2.

Example 3.3.6 (Zagier’s lists). Any 2× 2 or 3× 3 matrix K for the Cartan-like T-data
in Table 3.1 and 3.2 appears in lists of Zagier [Zag07, Table 2 and 3] as an example where

∑
m∈(Z≥0)r

q
1
2m

TKm+BTm+C∏r
a=1(q)ma

appears to be a modular function for some B ∈ Qr and C ∈ Q. We can see that all
sporadic examples with B = 0 in his lists are obtained from (A+, A−) or (A−, A+) in our
Table 3.1 and 3.2.

Example 3.3.7 (Andrew-Gordon identity). Let α be the Cartan-like T-datum associated
with the tadpole type Tr (see Example 2.3.8). It is of finite type since its T-system can
be obtained from the T-system associated with the bipartite belt of type A2r, which is
periodic, by an identification of variables. Since det Å+ = 1, we have Sα = 0. By using
Theorem 6.1 in [Nak11b], we see that the rational number cα is given by cα = 1−3/(2r+3).
The partition q-series of α is given by

Zα,0(q) =
∑

n∈(Z≥0)r

qN
2
1+···+N2

r

(q)n1
· · · (q)nr

,

where Na = na + · · ·+ nr. Using the Andrew-Gordon identity [And74]

∑
n∈(Z≥0)r

qN
2
1+···+N2

r

(q)n1
· · · (q)nr

=
∏
n>0

n ̸≡0,±(r+1) (mod 2r+3)

1

1− qn
,

together with the Jacobi triple product identity, we have

q−cα/24Zα,0(q) =
1

2η(q)

∑
n∈Z

a(n)qn
2/(8(2r+3)),

where

a(n) =


1 if n ≡ ±1 (mod 4(2r + 3)),

−1 if n ≡ ±(4r + 5) (mod 4(2r + 3)),

0 otherwise.

This implies that q−cα/24Zα,0(q) is a modular function.

Example 3.3.8 (Fermionic formulas). For any quantum affine algebra Uq(ĝ) and positive
integer with ` ≥ 2, the level ` restricted T-system and Y-system for Uq(ĝ) are defined
(see [KNS11]). Reading the exponents in the T-system and Y-system in [KNS11, Section
2], we can obtain the Cartan-like T-datum α(Uq(ĝ), `), where we replace a normalization
of the parameter u appropriately so that u ∈ Z and the T-datum satisfies (N1), and
we also discard the parameter Ω in [KNS11, Section 2.4] for twisted ĝ. Explicitly, the
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type of ĝ T-datum α(Uq(ĝ), `)

X
(1)
n α(Xn, `)

A
(2)
2n−2 α(Aℓ−1 ⊗ Cn)

A
(2)
2n α(Aℓ−1 ⊗ Tn)

D
(2)
n+1 α(Aℓ−1 ⊗Bn)

E
(2)
6 α(Aℓ−1 ⊗ F4)

D
(3)
4 α(Aℓ−1 ⊗G2)

Table 3.3 T-data associated with quantum affine algebras.

T-datum α(Uq(ĝ), `) is given in Table 3.3, where in the first line we denote by α(Xn, `)
the T-datum in Theorem 2.3.12 associated with the Cartan matrix of type Xn and the
integer `, and in the remaining lines we denote by α(Y ⊗Z) the T-datum obtained by the
tensor product construction in Example 2.3.7 from the Cartan matrices of types Y and
Z. The T-datum α(Uq(ĝ), `) is of finite type for any Uq(ĝ) and ` by the periodicity results
in [Kel13, IIK+10, IIK+13a, IIK+13b]. The partition q-series of α(Uq(ĝ), `) divided by a
product of the Dedekind eta coincide with the q-series version of the fermionic formulas
defined in [HKO+02, Section 5]. They conjectured that these q-series coincide with string
functions of integrable highest modules of ĝ [HKO+02, Conjecutre 5.3]. If this conjecture
holds, Conjecture 3.3.3 for α(Uq(ĝ), `) follows from the results by Kac and Peterson [KP84].

Example 3.3.9 (q-series from Nil-DAHA). Let Xn be the type of a finite type Cartan
matrix, and p be an integer with p ≥ 2. Consider the T-datum α(Xn ⊗ Ap−1), where
the meaning of this notation is the same as that in Example 3.3.8. This is of finite type
by [Kel13]. Then the partition q-series of α(Xn ⊗ Ap−1) are special cases of the q-series
studied by Cherednik and Feigin in the theory of Fourier transform of nilpotent double
affine Hecke algebras [CF13, Corollary 1.3]. In fact, they proved that their q-series are
modular functions [CF13, Theorem 2.3].

3.4 Exponents
In Proposition 3.3.2, we see that the leading term of the asymptotics of the partition
q-series is expressed by a special values of the dilogarithm function. In this section, we
study exponents associated with T-datum, which is a sequence of integers that describe
the sub-leading term of the asymptotics of the partition q-series.

Let α = (A+, A−, D) be a T-datum of finite type. We also assume that α is Cartan-
like. Let (fa)a∈[1,r] be the positive real solution of (3.2.1). We define two r × r diagonal
matrices ∆+ = diag(fa) and ∆− = diag(1− fa), and also define a polynomial

τ̄α(z) := det(A+∆− +A−∆+) ∈ R[z]. (3.4.1)

The following proposition give a relationship between the polynomial τ̄α(z) and the
asymptotics of the partition q-series.
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Proposition 3.4.1. We have

lim
ε↘0

Zα,tot(e
−ε)e−cαπ2/6δε =

√
det Å+

τ̄α(1)
,

where cα and δ are as in Proposition 3.3.2.

Proof. As with (2) of Proposition 3.3.2, the assertion follows from the asymptotic analysis
in [VZ11].

Remark 3.4.2. In [VZ11] (as well as [Ter94, Zag07]), they not only gave the limit of q-
series, but also gave a formula on the asymptotic expansion in the powers of ε. Although
it might be interesting to investigate higher order terms of the asymptotic expansion, it
is not dealt with in this paper.

We give another description of the polynomial τ̄α(z) in terms of a mutation loop. Let
R ⊆ [1, r]×Z be a consistent subset for α. Then we have a mutation loop associated with
(α,R) by Section 2.2.2, which we denote by γ = (B, d, i, ν). Considering the semifield
RI

>0, the mutation loop γ gives a real analytic map µ : RI
>0 → RI

>0 by the formula
yi(0) 7→ yν(i)(t), where y(0) and y(t) as in (2.1.6). The map µ has a unique fixed point

η ∈ RI
>0 by (1) in Theorem 3.2.4 and the formula (2.2.11). Then the differential dµη is

an endomorphism on the tangent space of RI
>0 at the fixed point η.

Proposition 3.4.3. The polynomial det τ̄(z) coincides with the characteristic polynomial
of the inverse of dµη in the variable zt:

det τ̄α(z) = det(zt − dµη),

where t is the integer in (R3) in Definition 2.2.3.

Proof. First note that τ̄α(z
−1)

.
= τ̄α(z) since we assume that α is Cartan-like, where

.
=

means the equality up to multiplying ±zk for some k ∈ Z.
Let η(u) be the I-tuple real positive number defined as y(u) in (2.1.6) associated with

the initial condition (B(0), y(0)) = (B, η). Let L(u) = (Lij(u))i,j∈I be the matrix given
by

Lij(u) :=


1 if i = j /∈ i(u),

−1 if i = j ∈ i(u),

[Bji(u)]+(1− fa) + [−Bji(u)]+fa if j = (a, u) ∈ i(u) and i 6= j,

0 otherwise.

(3.4.2)

Then L(u) is the matrix of the differential of the analytic map µ(u) : RI
>0 → RI

>0 given

by yi(u) 7→ yi(u + 1) at η(u) with respect to the bases
(
ηi(u)

∂
∂yi(u)

∣∣
η(u)

)
i∈I

and
(
ηi(u +

1) ∂
∂yi(u+1)

∣∣
η(u+1)

)
i∈I

(see Proposition 4.1 [Miz20b]). By the chain rule for differentials,

the matrix

L := PνL(t− 1) · · ·L(0)
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is the matrix of dµη with respect to the basis
(
ηi

∂
∂yi

∣∣
η

)
i∈I

, where Pν is the permutation

matrix of ν. On the other hand, let L̃ be the square matrix of size I × t defined by

L̃ :=


O · · · O PνL(t− 1)
L(0) · · · O O
...

. . . O O
O · · · L(t− 2) O


Clearly, we have

det(zt − L) = det(z − L̃).

Let H(u) = (Hij)i,j∈I be the matrix given by

Hij :=

{
1 if i = j /∈ i(u),

0 otherwise,

and let H̃ be the square matrix of size I × t defined by

H̃ :=


O · · · O PνH(t− 1)

H(0) · · · O O
...

. . . O O
O · · · H(t− 2) O


Explicitly, the entries in H̃ = (H̃(i,u),(j,v)) are given by

H̃(i,u),(j,v) =


1 if (j, v) /∈ i(v), (i, u+ 1) = (j, v), and 0 ≤ v < t,

1 if (j, v) /∈ i(v), (ν(i), 0) = (j, v), and v = t,

0 otherwise,

By the completeness of γ, the sum
∑∞

u=1 z
uH̃u−1 is a finite sum, giving an inverse matrix

of z−1−H̃. In particular, we have det(z−1−H̃)
.
= 1. We now see that (z−1−H̃)−1(z−1−L̃)

is the identity matrix except for the columns in i (we regard i as a subset of I × t by the
obvious way), and i× i submatrix of this matrix coincides with A∨

+∆− +A∨
−∆+:

(z−1 − H̃)−1(z−1 − L̃) ∼
[
A∨

+∆− +A∨
−∆+ O

∗ I

]
.

The first statement follows from the relation

(z−1 − H̃)−1(z−1 − L̃) = I + (z−1 − H̃)−1(H̃ − L̃)

and the fact that H̃ − L̃ is the zero matrix except for the columns in i. Noting that

(z−1 − H̃)−1 =
∑∞

u=1 z
uH̃u−1, the second statement follows by comparing the formula
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(2.1.8) and (2.1.9) with the definition of the matrices H̃ and L̃, respectively (see also
Figure 2.1).

Therefore, we have

det(zt − dµη) = det(zt − L) = det(z − L̃)
.
= τ̄α(z

−1)
.
= τ̄α(z).

Comparing the highest degrees, we obtain the assertion.

Definition 3.4.4. Let α = (A+, A−, D) be a Cartan-like T-datum of finite type. Suppose
that α is indecomposable, and let t be the number of connected components of the skew-
symmetrizable matrix B in Proposition 2.2.24. We define a polynomial τα(z) ∈ R[z] by
τα(z) := τ̄α(z

1/t).

We have

τα(z) = det(z − dµη) (3.4.3)

by Proposition 3.4.3.

Theorem 3.4.5. Any root of the polynomial τα(z) is a root of unity. More precisely, we
have λΩ/t = 1 for any root λ of τα(z), where Ω is a period in Definition 3.1.3.

Proof. Let γ be a mutation loop associated with the pair (α, [1, r]×Z). By the periodicity
of the Y-system associated with α, we have µΩ/t = id. Thus the assertion follows from
Proposition 3.4.3 and the chain rule for differentials.

For a polynomial F (z) whose roots are all N -th roots of unity, the roots of F (x) can
be written as

e2πim1/N , e2πim2/N , . . . , e2πimn/N ,

where 0 ≤ m1 ≤ m2 ≤ · · · ≤ mn < N is a sequence of integers. We call this sequence of
integers the exponents of F (x), and denote by E(F (x)).

Definition 3.4.6. The sequence E(τα(z)) is called the exponents associated with α.

Example 3.4.7. Let α be a T-datum given by

A+ =

1 + z2 −z 0
−z 1 + z2 −z
0 −z 1 + z2

 , A− =

1 + z2 −z 0
−z 1 + z2 −z
0 −z 1 + z2

 ,
and D = I3. Then the matrix K∨ in Proposition 3.2.3 is given by

K∨ =

 3
2 1 1

2
1 2 1
1
2 1 3

2

 ,
and the solution of the equation (3.2.1) is given by (f1, f2, f3) = (1/3, 1/4, 1/3). We have

τ̄α(z) = det

1 + z2 − 3
4z 0

− 2
3z 1 + z2 − 2

3z
0 − 3

4z 1 + z2


= z6 + 2z4 + 2z2 + 1,
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and

τα(z) = z3 + 2z2 + 2z + 1 = (z − e
2πi·2

6 )(z − e
2πi·3

6 )(z − e
2πi·4

6 ).

Thus the exponents associated with α are 2, 3, 4.

We see that τα(z) is invariant under interchanging A+ and A−:

Proposition 3.4.8. Let α = (A+, A−, D) be a Cartan-like T-datum of finite type. Then
αo := (A−, A+, D) is also a Cartan-like T-datum of finite type. Moreover, we have τα(z) =
ταo(z).

Proof. The first statement is obvious from the definition of T-data (Definition 2.2.1). Let
fa be the solution of the equation (3.2.1) for α. Then 1− fa is a solution of the equation
(3.2.1) for αo, which can be seen from another expression (3.2.3) of this equation. The
identity τα(z) = ταo(z) now follows from (3.4.1).

3.4.1 Exponents for T-datum of type (Xn, ℓ)

Fist we prepare some notations of root systems. Let C be an indecomposable Cartan
matrix of finite type Xn, and ` be a positive integer such that ` ≥ 2, as in Section 2.3.3.
Let ∆ be a root system of type Xn on a R-vector space with an inner product normalized
as (α | α) = 2 for long roots α, where Xn is a finite type Dynkin diagram in the Figure 3.1.
Let α1, . . . , αn be simple roots, where the numberings are consistent with the numberings
of nodes in Figure 3.1. Let ∆long and ∆short be the set of long roots and short roots,
respectively. Let ∆+ be the set of positive roots, and ρ be the half of the sum of the
positive roots:

ρ =
1

2

∑
α∈∆+

α.

Let ca (1 ≤ a ≤ n) be the entries in the left symmetrizer of C as in Section 2.3.3. We
assume that gcd(c1, . . . , cn) = 1 for simplicity. We define an integer c by

c := lcm(c1, . . . , cn) =


1 if Xn = An, Dn, E6, E7 or E8,

2 if Xn = Bn, Cn or F4,

3 if Xn = G2.

(3.4.4)

Let h∨ be the dual Coxeter number. The list of dual Coxeter numbers is given by

Xn An Bn Cn Dn E6 E7 E8 F4 G2

h∨ n+ 1 2n− 1 n+ 1 2n− 2 12 18 30 9 4
. (3.4.5)

Let α be the T-datum associated with the pair (Xn, `) given by Theorem 2.3.12, which
is Cartan-like by definition. Moreover, α is of finite type with period Ω = 2c(` + h∨),
which was prove in [IIK+13a, IIK+13b]. Thus we can define the polynomial τα(z) by
Definition 3.4.4. Note that t = 2 in Definition 3.4.4 for this α. We give a conjectural
formula on exponents associated with α in terms of root systems.
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An
1 2

· · ·
n− 1 n

Bn
1 2

· · ·
n− 1 n

Cn
1 2

· · ·
n− 1 n

Dn
1 2

· · ·
n− 2 n− 1

n

E6
1 2 3 5 6

4

E7
1 2 3 4 5 6

7

E8
1 2 3 4 5 6 7

8

F4
1 2 3 4

G2
1 2

Fig. 3.1 The list of Dynkin diagrams of finite type.

We define two polynomials NXn,ℓ(z) and DXn,ℓ(z) by

NXn,ℓ(z) =
n∏

a=1

zc(ℓ+h∨) − 1

zca − 1
, (3.4.6)

DXn,ℓ(z) = Dlong
Xn,ℓ

(z)Dshort
Xn,ℓ (z), (3.4.7)

where the polynomials Dlong
Xn,ℓ

(z) and Dshort
Xn,ℓ

(z) are defined by

Dlong
Xn,ℓ

(z) =
∏

α∈∆long

(
zc − e

2πi(ρ|α)

ℓ+h∨
)
, (3.4.8)



Chapter 3 Periodic Y/T-systems 61

1 2 3 4 5 6

Fig. 3.2 The underlying white circles represent the exponents of NA3,3(x), and the
black marks represent the exponents of DA3,3(x). The number of vertices in a same
vertical line is a multiplicity. Furthermore, the black circles and diamonds represent
the exponents that come from the positive roots and the negative roots, respectively.
The unmarked white circles represent the exponents of NA3,3(x)/DA3,3(x).

Dshort
Xn,ℓ (z) =

∏
α∈∆short

(
z − e

2πi(ρ|α)

ℓ+h∨
)
. (3.4.9)

When X = A,D or E, the polynomials NXn,ℓ(z) and DXn,ℓ(z) can be written more
simply:

NXn,ℓ(z) =

(
zℓ+h∨ − 1

z − 1

)n

, (3.4.10)

DXn,ℓ(z) =
∏
α∈∆

(
z − e

2πi(ρ|α)

ℓ+h∨
)
. (3.4.11)

Conjecture 3.4.9. Let C be an indecomposable Cartan matrix of finite type Xn, and `
be a positive integer such that ` ≥ 2. Let α be the T-datum associated with these data
(Xn, `) given by Theorem 2.3.12. Then the roots of τα(z) is given by the formula

τα(z) =
NXn,ℓ(z)

DXn,ℓ(z)
. (3.4.12)

Example 3.4.10. Let (Xn, `) = (A3, 3). The dual Coxeter number is given by h∨ = 4,
so `+ h∨ = 7. Therefore, the exponents of NA3,3(z) is given by

E(NA3,3(z)) = (1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6).

On the other hand, by calculation on the root system of type A3, we obtain

E(DA3,3(z)) = (1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 6, 6).

As the result, the exponents of NA3,3(z)/DA3,3(z) are given by

E
(
NA3,3(z)

DA3,3(z)

)
= (2, 3, 3, 4, 4, 5).

Figure 3.2 illustrates these exponents.
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1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 3.3 The exponents of NB3,2(z) and DB3,2(z). The meanings of the symbols are
the same as in Figure 3.2.

Example 3.4.11. Let (Xn, `) = (B3, 2). The dual Coxeter number is given by h∨ = 5,
so c(`+ h∨) = 14. Therefore, the exponents of NB3,2(z) is given by

E(NB3,2(z)) = (1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 8, 8, 9, 9, 9,

10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13).

On the other hand, by calculation on the root system of type B3, we obtain

E(Dlong
B3,2

(z)) = (1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13),

E(Dshort
B3,2 (z)) = (1, 3, 5, 9, 11, 13).

As the result, the exponents of NB3,2(z)/DB3,2(z) are given by

E
(
NB3,2(z)

DB3,2(z)

)
= (2, 4, 6, 7, 8, 10, 12).

Figure 3.3 illustrates these exponents.

Theorem 3.4.12. Conjecture 3.4.9 is true in the following cases:

(1) (A1, `) for all ` ≥ 2,
(2) (An, 2) for all r ≥ 1.

We will prove Theorem 3.4.12 in Section 3.4.2.

3.4.2 Proofs of Theorem 3.4.12

(A1, `) case
Lemma 3.4.13. The right-hand side of (3.4.12) is given by

NA1,ℓ(z)

DA1,ℓ(z)
=

ℓ∏
a=2

(z − e
2πia
ℓ+2 ).

Proof. First note that the dual Coxeter number of A1 is given by h∨ = 2. Then, the
lemma follows from

NA1,ℓ(z) =
zℓ+2 − 1

x− 1
,
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µ2

−→

1

2

3

µ1,3

−→

1

2

3

1

2

3

Fig. 3.4 The mutation loop for type (A1, 4).

and

DA1,ℓ(z) = (z − e
2πi
ℓ+2 )(z − e

−2πi
ℓ+2 )

= (z − e
2πi
ℓ+2 )(z − e

2πi(ℓ+1)
ℓ+2 ).

Let α be a T-datum of type (A1, `). What we have to show is that the exponents of
τα(z) are 2, 3, . . . , `. To prove this, we consider the mutation loop associated with (α,R),
where

R = {(m, p) ∈ [1, `− 1]× Z | m+ p ≡ 0 mod 2}

is a consistent subset for α. Then the index set of the mutation loop associated with
(α,R) is given by I = Rin = I(0) t I(0), where

I(0) := {(m, 0) | 0 ≤ m ≤ `− 1,m ≡ 0 mod 2},
I(1) := {(m, 1) | 0 ≤ m ≤ `− 1,m ≡ 1 mod 2}.

For example, Figure 3.4 shows the mutation loop for (A1, 4).
Let ζ = eπi/(ℓ+2). For m = 1, 2, . . . , `− 1, we define non-zero real numbers

zm =
sin πm

ℓ+2 sin
π(m+2)

ℓ+2

sin2 π(m+1)
ℓ+2

(3.4.13)

=
(ζm − ζ−m)(ζm+2 − ζ−m−2)

(ζm+1 − ζ−m−1)2
. (3.4.14)

Then we see by direct calculations that

fm = 1− zm =
sin2 π

ℓ+2

sin2 (m+1)π
ℓ+2

is a solution of the equation (3.2.1).
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Let L(0) = (Lmk(0))m,k=1,...,ℓ−1 and L(1) = (Lmk(1))m,k=1,...,ℓ−1 be matrices given by
(3.4.2). Explicitly, these are given by

Lmk(p) =

{
δmk if k ∈ I(1− p),

−δmk + zk(δm,k−1 + δm,k+1) if k ∈ I(p).
(3.4.15)

for p = 0, 1.
For any non-zero complex number λ, we consider the following difference equation of

the numbers (φm)0≤m≤ℓ:

φm−1 + φm+1 = φmz
−1
m (λ+ λ−1) (3.4.16)

with the boundary conditions given by

φ0 = φℓ = 0. (3.4.17)

Lemma 3.4.14. Let (φm)0≤m≤ℓ be a non-zero solution of the difference equation (3.4.16)
satisfying the boundary conditions (3.4.17). Then the vector

ψ =

 ψ1

...
ψℓ−1


defined by

ψm =

{
λφm if m ∈ I(0),

φm if m ∈ I(1),

is an eigenvector of the transpose matrix of L = L(1)L(0) with an eigenvalue λ2, that is,

LTψ = λ2ψ.

Proof. Let ψ′ = L(1)Tψ and ψ′′ = L(0)Tψ′(= LTψ). In the following equations, we
assume that ψ0 = ψℓ = ψ′

0 = ψ′
ℓ = 0. Then we obtain

ψ′
m =

{
ψm if m ∈ I(0),

−ψm + zm(ψm−1 + ψm+1) if m ∈ I(1),

and

ψ′′
m =

{
−ψ′

m + zm(ψ′
m−1 + ψ′

m+1) if m ∈ I(0),

ψ′
m if m ∈ I(1).
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For any m ∈ I(1), we compute

ψ′′
m − λ2ψm = ψ′

m − λ2ψm

= −ψm + zm(ψm−1 + ψm+1)− λ2ψm

= −φm + zmλ(φm−1 + φm+1)− λ2φm

= zmλ(−z−1
m (λ+ λ−1)φm + φm−1 + φm+1)

= 0.

In particular, we obtain ψ′
m = λ2ψm for m ∈ I(1). Thus, for any m ∈ I(0), we find that

ψ′′
m − λ2ψm = −ψ′

m + zm(ψ′
m−1 + ψ′

m+1)− λ2ψm

= −ψm + zmλ
2(ψm−1 + ψm+1)− λ2ψm

= −λφm + zmλ
2(φm−1 + φm+1)− λ3φm

= zmλ
2(−z−1

m (λ+ λ−1)φm + φm−1 + φm+1)

= 0,

and this complete the proof.

Now we focus on solving the difference equation (3.4.16) satisfying the boundary con-

ditions (3.4.17). We will show that (φ
(a)
m )m=0,...,ℓ for

φ(a)m = det

[
2 cos πa

ℓ+2 2 cos πa(m+1)
ℓ+2

sin π(a−1)
ℓ+2 /sin π

ℓ+2 sin π(a−1)(m+1)
ℓ+2 /sin π(m+1)

ℓ+2

]
(3.4.18)

is a non-zero solution of (3.4.16) and (3.4.17) for λ = ζa if a = 2, . . . , ` (Theorem 3.4.18).
To prove this, we introduce the following Laurent polynomials:

α(a)(z) = za + z−a, (3.4.19)

β(a)(z) =
za−1 − z−a+1

z − z−1
. (3.4.20)

We write α(a)(zm+1) and β(a)(zm+1) as α
(a)
m (z) and β

(a)
m (z). We also define a Laurent

polynomial P
(a)
m (z) by

P (a)
m (z) = det

(
α
(a)
0 (z) α

(a)
m (z)

β
(a)
0 (z) β

(a)
m (z)

)
. (3.4.21)

Note that φ
(a)
m in (3.4.18) can be written as P

(a)
m (ζ).

Let us examine difference equations for α
(a)
m (z), β

(a)
m (z) and P

(a)
m (z).

Lemma 3.4.15. The Laurent polynomials α
(a)
m (z) satisfy the difference equation

α
(a)
m−1(z) + α

(a)
m+1(z) = α

(a)
0 (z)α(a)

m (z). (3.4.22)
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Proof. We compute

α
(a)
m−1 + α

(a)
m+1(z)

= (zam + z−am) + (za(m+2) + z−a(m+2))

= (za + z−a)(za(m+1) + z−a(m+1))

= α
(a)
0 (z)α(a)

m (z),

and this proves the lemma.

Lemma 3.4.16. The Laurent polynomials β
(a)
m (z) satisfy the difference equation(

β
(a)
m−1(z) + β

(a)
m+1(z)

)
(zm − z−m)(zm+2 − z−m−2)

= α
(a)
0 (z)β(a)

m (z)(zm+1 − z−m−1)2 − α(a)
m (z)β

(a)
0 (z)(z − z−1)2.

(3.4.23)

Proof. We compute(
β
(a)
m−1(z) + β

(a)
m+1(z)

)
(zm − z−m)(zm+2 − z−m−2)

− α
(a)
0 (z)β(a)

m (z)(zm+1 − z−m−1)2

= (z(a−1)m − z−(a−1)m)(zm+2 − z−m−2)

+ (z(a−1)(m+2) − z−(a−1)(m+2))(zm − z−m)

− α
(a)
0 (z)(z(a−1)m − z−(a−1)m)(zm+1 − z−m−1)

= (zam+2 + z−am−2 − zam−2m−2 − z−am+2m+2)

+ (za(m+2)−2 + z−a(m+2)+2 − za(m+2)−2m−2 − z−a(m+2)+2m+2)

− (za(m+2) + zam − z−am+2m+2 − z−a(m+2)+2m+2

− za(m+2)−2m−2 − zam−2m−2 + z−am + z−a(m+2))

= zam+2 + z−am−2 + za(m+2)−2 + z−a(m+2)+2

− zam − z−am − za(m+2) − z−a(m+2)

= (z − z−1)(zam+1 − z−am−1 + za(m+2)−1 − z−a(m+2)+1)

= −(z − z−1)(za(m+1) + z−a(m+1))(za−1 − z−a+1)

= −α(a)
m (z)β

(a)
0 (z)(z − z−1)2,

and this proves the lemma.

Lemma 3.4.17. The Laurent polynomials P
(a)
m (z) satisfy the difference equation(

P
(a)
m−1(z) + P

(a)
m+1(z)

)
(zm − z−m)(zm+2 − z−m−2)

= P (a)
m (z)α

(a)
0 (z)(zm+1 − z−m−1)2.

(3.4.24)
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Proof. By using (3.4.22), (3.4.23) and the relation

(zm+1 − z−m+1)2 − (z − z−1)2 = (zm − z−m)(zm+2 − z−m−2),

we obtain

P (a)
m (z)α

(a)
0 (z)(zm+1 − z−m−1)2

=
(
α
(a)
0 (z)β(a)

m (z)− α(a)
m (z)β

(a)
0 (z)

)
α
(a)
0 (z)(zm+1 − z−m−1)2

= α
(a)
0 (z)

((
β
(a)
m−1(z) + β

(a)
m+1(z)

)
(zm − z−m)(zm+2 − z−m−2)

+α(a)
m (z)β

(a)
0 (z)(z − z−1)2

)
− α

(a)
0 (z)α(a)

m (z)β
(a)
0 (z)(zm+1 − z−m−1)2

= α
(a)
0 (z)

(
β
(a)
m−1(z) + β

(a)
m+1(z)

)
(zm − z−m)(zm+2 − z−m−2)

− α
(a)
0 (z)α(a)

m (z)β
(a)
0 (z)

(
(zm+1 − z−m+1)2 − (z − z−1)2

)
=
(
α
(a)
0 (z)

(
β
(a)
m−1(z) + β

(a)
m+1(z)

)
− α

(a)
0 (z)α(a)

m (z)β
(a)
0 (z)

)
· (zm − z−m)(zm+2 − z−m−2)

=
(
α
(a)
0 (z)

(
β
(a)
m−1(z) + β

(a)
m+1(z)

)
−
(
α
(a)
m−1(z) + α

(a)
m+1(z)

)
β
(a)
0 (z)

)
· (zm − z−m)(zm+2 − z−m−2)

=
(
P

(a)
m−1(z) + P

(a)
m+1(z)

)
(zm − z−m)(zm+2 − z−m−2),

completing the proof.

Using Lemma 3.4.17, we can construct non-zero solutions of the difference equation
(3.4.16) satisfying the boundary conditions (3.4.17).

Theorem 3.4.18. For any a = 2, 3, . . . , ` and m = 0, 1, . . . , `, let φ
(a)
m = P

(a)
m (ζ). Then

the following properties hold:

(1) The numbers {φ(a)m | 0 ≤ m ≤ `} satisfy the difference equation (3.4.16) for λ = ζa.

(2) The boundary conditions (3.4.17) hold, i.e., φ
(a)
0 = φ

(a)
ℓ = 0.

(3) There exists m such that φ
(a)
m 6= 0.

Proof. The property (1) follows from Lemma 3.4.17 and the definition of zm (3.4.13). Now

we prove the property (2). The definition of P
(a)
m (z) immediately implies that P

(a)
0 (z) = 0,

hence φ
(a)
0 = 0. To prove φ

(a)
ℓ = 0, we define a Laurent polynomial P̃ (a)(x, y) of two

variables by

P̃ (a)(x, y) = det

(
α(a)(x) α(a)(y)
β(a)(x) β(a)(y)

)
.
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Fig. 3.5 The values of (ϕ
(2)
m )m=0...,ℓ and (ϕ

(3)
m )m=0...,ℓ for ℓ = 5.

It is easy to see that the polynomial P̃ (a)(x, y) satisfies

P̃ (a)(x, xm+1) = P (a)
m (x),

P̃ (a)(x, y−1) = P̃ (a)(x, y),

P̃ (a)(x,−y) = (−1)aP̃ (a)(x, y).

Thus we have

φ
(a)
ℓ = P

(a)
ℓ (ζ) = P̃ (a)(ζ, ζℓ+1) = P̃ (a)(ζ,−ζ−1)

= (−1)aP̃ (a)(ζ, ζ−1) = (−1)aP̃ (a)(ζ, ζ) = 0.

Now we prove the property (3). We will show that φ
(a)
1 > 0. The number φ

(a)
1 can be

written as

φ
(a)
1 = ζa + ζ−a · ζ

2a−2 − ζ−2a+2

ζ2 − ζ−2
− ζ2a + ζ−2a · ζ

a−1 − ζ−a+1

ζ − ζ−1

=
ζa−1 − ζ−a+1

ζ2 − ζ−2

(
(ζa + ζ−a)(ζa−1 + ζ−a+1)− (ζ2a + ζ−2a)(ζ + ζ−1)

)
=
ζa−1 − ζ−a+1

ζ2 − ζ−2

(
(ζ + ζ−1)− (ζ2a+1 + ζ−2a−1)

)
= sin

(a− 1)π

`+ 2

(
sin

2π

`+ 2

)−1(
2 cos

π

`+ 2
− 2 cos

(2a+ 1)π

`+ 2

)
.

This shows that φ
(a)
1 > 0 for a = 2, 3, . . . , `.

We plot the values of (φ
(a)
m )m=0...,ℓ for ` = 5 and a = 2, 3, 4, 5 in Figure 3.5 and 3.6.

The underlying graphs are plots of the function

det

[
2 cos πa

ℓ+2 2 cos πa(u+1)
ℓ+2

sin π(a−1)
ℓ+2 /sin π

ℓ+2 sin π(a−1)(u+1)
ℓ+2 /sin π(u+1)

ℓ+2

]
in an interval 0 ≤ u ≤ `, and the points on these graphs represent the values of

(φ
(a)
m )m=0...,ℓ.
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Fig. 3.6 The values of (ϕ
(4)
m )m=0...,ℓ and (ϕ

(5)
m )m=0...,ℓ for ℓ = 5.

Corollary 3.4.19. The exponents of τα(z) for type (A1, `) are 2, 3, . . . , `, that is,

τα(z) =
ℓ∏

a=2

(z − e
2πia
ℓ+2 ).

In particular, Conjecture 3.4.9 is true in this case.

Proof. From Theorem 3.4.18, we find that e
2πia
ℓ+2 for a = 2, 3, . . . , ` are eigenvalues of L,

and thus of dµη. These are all the eigenvalues and their multiplicities are one, since the
size of the matrix L is `− 1. The assertion now follows by Proposition 3.4.3.

(An, 2) case
The following Lemma shows that the right-hand side of the conjectural formula (3.4.12)
for (An, 2) is the same as that for (A1, `) if we change the parameter as n↔ `− 1. Such
a phenomenon is known as the level-rank duality.

Lemma 3.4.20. The right-hand side in (3.4.12) is given by

NAn,2(z)

DAn,2(z)
=

n+1∏
a=2

(z − e
2πia
n+3 ).

Proof. Because h∨ = n+ 1, we obtain

NAn,2(z) =

(
zn+3 − 1

z − 1

)n

,

and

DAn,2(z) =
∏
α∈∆

(z − e
2πi(ρ|α)

n+3 ).

We can easily see that, say using a concrete realization of the root system of type An,
the following holds:

#{α ∈ ∆+ | (ρ | α) = a} =

{
n+ 1− a if 1 ≤ a ≤ n+ 1,

0 if a = n+ 2.
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1 2 3 4 5 6 7 8

Fig. 3.7 The exponents of NAn,2 and DAn,2 for n = 6. The meanings of the symbols
are the same as in Figure 3.2.

Thus for any 1 ≤ a ≤ n+ 2, we obtain

#{α ∈ ∆+ | (ρ | α) = a mod n+ 3}
= #{α ∈ ∆+ | (ρ | α) = a}+#{α ∈ ∆+ | (ρ | −α) = a− n− 3}

=


n if a = 1,

n− 1 if 2 ≤ a ≤ n+ 1,

n if a = n+ 2,

and this implies that

DAn,2(z)
n+1∏
a=2

(x− e
2πia
n+3 ) = NAn,2(z),

completing the proof. Figure 3.7 illustrates these calculations.

We now complete the proof of Theorem 3.4.12.

Corollary 3.4.21. Conjecture 3.4.9 is true for (An, 2).

Proof. The assertion follows from Proposition 3.4.8 and Corollary 3.4.19.

3.5 Relationships with affine Lie algebras

3.5.1 Partition q-series and fermionic formulas

First we study Example 3.3.8 in a little bit more detail, and give some examples. In this

section, we will for simplicity assume that ĝ is of untwisted type, that is, of type X
(1)
n .
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Fix a pair (Xn, `) as in Section 2.3.3 and 3.4.1, and let α be the T-datum associated
with this pair. Recall the notations αa and ta in these sections.

Let Q be the free abelian group defined by

Q =
n⊕

a=1

Zαa. (3.5.1)

The free abelian group Q is called a root lattice. Let M be the free abelian subgroup of
Q defined by

M =

n⊕
a=1

Ztaαa. (3.5.2)

Let H be the index set given by

H = {(a,m) | 1 ≤ a ≤ n, 1 ≤ m ≤ ta`− 1}.

For any element u ∈ ZH , let u
(a)
m denote the (a,m)-entry of u.

Recall the abelian groups Hα, H
′
α, and Sα in Section 3.3.

Lemma 3.5.1. The group homomorphism

F̄ : Hα −→ Q

defined by

F̄ (u, v) =
∑

(a,m)∈H

mu(a)m αa

is surjective, and the kernel of ι◦ F̄ is equal to H ′
α, where ι : Q→ Q/`M is the projection.

Thus we obtain the group isomorphism

F : Sα −→ Q/`M. (3.5.3)

Proof. Since Å+ is non-singular, the abelian group Zγ is given by

H ′
α = {(u,K−1u) | u ∈ ZH}.

Thus the map F̄ is surjective since

F̄ (u, v) =
n∑

a=1

u
(a)
1 αa

if u
(a)
m = 0 for all m > 1.
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For any element w ∈ ZH , we compute

F̄ ((Å∨
+)

Tw, (Å∨
−)

Tw)

=
∑

(a,m)∈H

m

 ∑
(b,k)∈H

δabC̄
a
mkw

(b)
k

αa

=
n∑

a=1

(
taℓ−1∑
m=1

2mw(a)
m −

taℓ−2∑
m=1

(m+ 1)w(a)
m −

taℓ−1∑
m=2

(m− 1)w(a)
m

)
αa

=
n∑

a=1

ta`w
(a)
taℓ−1αa,

and this shows that Bγ = ker(ι ◦ F̄ ) as desired.

Note that K∨ = K since α∨ = α. Moreover, it is known that the positive symmetric
matrix K is expressed as

Kmk
ab =

(
min(tbm, tak)−

mk

`

)
(αa | αb)

where Kmk
ab is the ((a,m), (b, k))-th entries of K (see [KNS11, (14.36)]).

From Lemma 3.5.1, we obtain the following result.

Theorem 3.5.2. The partition q-series of α at σ ∈ Sα is given by

Zα,σ(q) =
∑

u∈(Z≥0)H ,(♢)

q
1
2u

TKu∏
(a,m)∈H(q)

u
(a)
m

,

where the sum runs over u ∈ (Z≥0)
H under the condition∑

(a,m)∈H

mu(a)m αa ≡ λ mod `M, (♢)

where λ is a representative of F (σ).

Corollary 3.5.3. The total partition q-series of α is given by

Zα(q) =
∑

u∈(Z≥0)H

q
1
2u

TKu∏
(a,m)∈H(q)

u
(a)
m

.

The expression of the q-series Zα,σ(q) in Theorem 3.5.2 is called a fermionic for-
mula [HKO+02]. See also Example 3.3.8.

Example 3.5.4. Let (Xn, `) = (A3, 3). The index set H is given by

H = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}.
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The T-datum is given by

A+ =


1 + z2 −z 0 0 0 0
−z 1 + z2 0 0 0 0
0 0 1 + z2 −z 0 0
0 0 −z 1 + z2 0 0
0 0 0 0 1 + z2 −z
0 0 0 0 −z 1 + z2

 ,

A− =


1 + z2 0 −z 0 0 0

0 1 + z2 0 −z 0 0
−z 0 1 + z2 0 −z 0
0 −z 0 1 + z2 0 −z
0 0 −z 0 1 + z2 0
0 0 0 −z 0 1 + z2

 .

The partition q-series are parametrized by elements of the set

Sα = {(a, 0, b, 0, c, 0) | 0 ≤ a, b, c,≤ 2},

where (u, v)+H ′
α ∈ Hα is denoted by (u

(1)
1 , u

(2)
1 , u

(3)
1 , u

(3)
2 , u

(3)
3 ). Let us write (a, 0, b, 0, c, 0)

more simply as abc. Then we have

Sα = {000, 100, 200, 010, 110, 210, 020, 120, 220,
001, 101, 201, 011, 111, 211, 021, 121, 221,

002, 102, 202, 012, 112, 212, 022, 122, 222}.

We exhibit several low order terms of the partition q-series:

Zσ
γ (q) = 1 + 6q2 + 20q3 + 54q4 + 144q5 + 360q6 + 804q7 +O(q8)

if σ = 000,

q
2
3 + 3q

5
3 + 13q

8
3 + 38q

11
3 + 108q

14
3 + 264q

17
3 + 622q

20
3 + 1364q

23
3 +O(q

26
3 )

if σ = 100, 200, 010, 110, 020, 220, 001, 011, 111, 002, 022, 222,

q + 6q2 + 18q3 + 56q4 + 144q5 + 357q6 + 808q7 + 1767q8 +O(q9)

if σ = 210, 120, 211, 021, 221, 012, 112, 122, and

2q
4
3 + 8q

7
3 + 28q

10
3 + 76q

13
3 + 199q

16
3 + 468q

19
3 + 1060q

22
3 + 2256q

25
3 +O(q

28
3 )

if σ = 101, 201, 121, 102, 202, 212.

Example 3.5.5. Let (Xn, `) = (B3, 2). The index set H is given by

H = {(1, 1), (2, 1), (3, 1), (3, 2), (3, 3)}.
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The T-datum is given by

A+ =


1 + z4 0 0 0 0

0 1 + z4 0 0 0
0 0 1 + z2 −z 0
0 0 −z 1 + z2 −z
0 0 0 −z 1 + z2

 ,

A− =


1 + z4 −z2 0 0 0
−z2 1 + z4 −z2 −z − z3 −z2
0 0 1 + z2 0 0
0 −z 0 1 + z2 0
0 0 0 0 1 + z2

 .
The partition q-series are parametrized by elements of the set

Sα = {(a, b, c, 0, 0) | 0 ≤ a, b ≤ 1, 0 ≤ c ≤ 3},

where (u, v) + Zγ ∈ Hγ is denoted by (u
(1)
1 , u

(2)
1 , u

(3)
1 , u

(3)
2 , u

(3)
3 ). Let us write (a, b, c, 0, 0)

more simply as abc. Then we have

Sα = {000, 100, 010, 110, 001, 101, 011, 111,
002, 102, 012, 112, 003, 103, 013, 113}

We exhibit several low order terms of the partition q-series:

Zσ
γ (q) = 1 + 9q2 + 21q3 + 66q4 + 144q5 + 349q6 + 723q7 +O(q8)

if σ = 000,

q
1
2 + 4q

3
2 + 13q

5
2 + 38q

7
2 + 97q

9
2 + 228q

11
2 + 504q

13
2 + 1057q

15
2 +O(q

17
2 )

if σ = 100, 010, 110, 102, 012, 112,

q
3
4 + 5q

7
4 + 17q

11
4 + 48q

15
4 + 120q

19
4 + 279q

23
4 + 608q

27
4 + 1261q

31
4 +O(q

35
4 )

if σ = 001, 011, 111, 003, 013, 113,

3q
5
4 + 9q

9
4 + 30q

13
4 + 75q

17
4 + 187q

21
4 + 411q

25
4 + 885q

29
4 + 1783q

33
4 +O(q

37
4 )

if σ = 101, 103, and

3q + 6q2 + 25q3 + 57q4 + 156q5 + 334q6 + 744q7 + 1491q8 +O(q9)

if σ = 002.
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3.5.2 Affine Lie algebras

In this section, we review basic concepts of affine Lie algebras and their integrable highest
weight modules. See [Kac90] for more detail. Let Xn (= An, Bn, Cn, Dn, E6,7,8, F4 or
G2) be a finite type Dynkin diagram, and g be the finite dimensional simple Lie algebra
of type Xn over C. Let h be a Cartan subalgebra of g, and ∆ be the set of roots. We
also use the notations on root systems that we used in previous sections. We extend the
inner product (· | ·) to the nondegenerate symmetric bilinear form on h∗. We define the
following two free abelian groups:

Q =
n⊕

a=1

Zαa, M =
n⊕

a=1

Ztaαa.

We also define the following sets:

P =

{
Λ ∈ h∗

∣∣∣∣ 2(Λ | αa)

(αa | αa)
∈ Z for all a = 1, . . . , r

}
,

P+ =

{
Λ ∈ P

∣∣∣∣ 2(Λ | αa)

(αa | αa)
≥ 0 for all a = 1, . . . , r

}
.

Let

ĝ = g⊗ C[t, t−1]⊕ CK ⊕ Cd

be the affine Lie algebra associated with g. The Lie bracket on ĝ is defined as

[X ⊗ tm, Y ⊗ tn] = [X,Y ]⊗ tm+n +mδm+n,0 · (X | Y )K,

[K, ĝ] = {0},
[d,X ⊗ tn] = nX ⊗ tn.

Fix a non-negative integer `. Let us define the following set:

P ℓ
+ = {Λ ∈ P+ | (Λ | θ) ≤ `},

where θ is the highest root in ∆. For any Λ ∈ P ℓ
+, there is the unique level ` integrable

highest weight ĝ-module such that the classical part of its highest weight is Λ, which is
denoted by L(Λ).

We define the following rational numbers associated with L(Λ):

c(`) =
` dim g

`+ h∨
,

hΛ =
(Λ | Λ + 2ρ)

2(`+ h∨)
.
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Let q = e2πiτ . For any diagonalizable linear map α : V → V with eigenvalues λ1, λ2, . . .
with finite multiplicities m1,m2, . . . , we define the trace trV q

α by trV q
α =

∑
imiq

λi . We
define the following two functions as in [KW88]:

χΛ(τ) = q−
c(ℓ)
24 trL(Λ) q

hΛ−d, (3.5.4)

bΛλ (τ) = q−
c(ℓ)−r

24 trU(Λ,λ) q
hΛ− (λ|λ)

2ℓ −d, (3.5.5)

where λ ∈ h∗ and

U(Λ, λ) = {v ∈ L(Λ) | (h⊗ tn)v = δn,0λ(h)v for all h ∈ h, n ≥ 0}.

These series converge to holomorphic functions on the upper half-plane H = {τ ∈ C |
Im τ > 0}. The function χΛ(τ) is called the (specialized) normalized character*1 of L(Λ),
and bΛλ (τ) is called the branching function for the pair (g, h). We will simply call bΛλ (τ) as
the branching function. Note that dividing this branching function by the r-th power of
the Dedekind eta function yields the string function in [KP84].

The asymptotics of the normalized character and the branching function were studied
in detailed in [KP84, KW88]. Let τ ↘ 0 denote the limit in the positive imaginary axis.

Theorem 3.5.6 ([KP84, KW88]). Suppose that λ ∈ Λ +Q. Then

lim
τ↘0

χΛ(τ)e
−πic(ℓ)

12τ = a(Λ), (3.5.6)

lim
τ↘0

bΛλ (τ)e
−πi(c(ℓ)−r)

12τ = |P/Q| 12 |Q/`M |− 1
2 a(Λ), (3.5.7)

where a(Λ) is the real number defined by

a(Λ) = |P/(`+ h∨)M |− 1
2

∏
α∈∆+

2 sin
π(Λ + ρ | α)
`+ h∨

. (3.5.8)

The real number a(Λ) is called the asymptotic dimension of L(Λ) for the following rea-
son. The module L(Λ) is infinite dimensional unless Λ is trivial, and χΛ(0) = dimL(Λ) =
∞. However, (3.5.6) says that by multiplying by the appropriate exponential term and
taking the limit, we can get the finite number a(Λ). Therefore, we can think that the real
number a(Λ) is the “dimension” of L(Λ).

3.5.3 Exponents and asymptotic dimension

The branching functions with Λ = 0 are expected to coincide with the partition q-series
that we studied in Section 3.5.1 via the conjectural formula of the branching functions
in [KNS93]. This was first observed in [KT15] for the total partition q-series with X =
ADE. Let bΛλ (q) denote the formal q-series defined by the right-hand side of (3.5.5).

*1 More precisely, χΛ(τ) is the normalized character in [KW88] at z = t = 0.
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Conjecture 3.5.7 ([KNS93]). Suppose that ` ≥ 2. Let α be the T-datum associated with
the pair (Xn, `) as in Section 3.5.1. Suppose that σ ∈ Sα, and λ ∈ Q is a representative
of F (σ), where F is defined as (3.5.3). Then

q−
c(ℓ)−r

24 Zα,σ(q) = b0λ(q). (3.5.9)

By summing (3.5.9) for all elements in Q/`M , we obtain the following conjectural
identity on the total partition q-series:

q−
c(ℓ)−r

24 Zα(q) =
∑

λ∈Q/ℓM

b0λ(q). (3.5.10)

By comparing the asymptotics in Proposition 3.3.2 and (3.5.7), and noting that

det Å+ = |Q/`M |, we find that (3.5.10) yields the following identities:

6

π2

n∑
a=1

taℓ−1∑
m=1

L(f (a)m ) = c(`)− n, (3.5.11)

and

1√
τα(1)

= |P/Q| 12 a(0), (3.5.12)

where f
(a)
m is a positive real solution of the equation

f (a)m =
n∏

b=1

taℓ−1∏
k=1

(1− f
(b)
k )K

mk
ab (1 ≤ a ≤ n, 1 ≤ m ≤ ta`− 1).

The identity (3.5.11) is called the dilogarithm identity in conformal field theories, and
proved in [Nak11a, IIK+13a, IIK+13b] by using cluster algebras. On the other hand, the
identity (3.5.12) is exactly Conjecture 3.4.9 at z = 1 because

NXn,ℓ(1)

DXn,ℓ(1)
=

r∏
a=1

ta(`+ h∨)

 ∏
α∈∆+

2 sin
π(ρ | α)
`+ h∨

−2

= |Q/(`+ h∨)M |

 ∏
α∈∆+

2 sin
π(ρ | α)
`+ h∨

−2

= |P/Q|−1a(0)−2.

Consequently, the conjectural identity (3.5.12) gives us a consistency between our conjec-
ture on exponents (Conjecture 3.4.9) and the known conjecture on q-series (Conjecture
3.5.7), and also gives an interesting connection between the theory of cluster algebras and
the representation theory of affine Lie algebras.
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